scholarly journals Immunogenicity and Efficacy of a Novel Multi-Antigenic Peptide Vaccine Based on Cross-Reactivity between Feline and Human Immunodeficiency Viruses

Viruses ◽  
2019 ◽  
Vol 11 (2) ◽  
pp. 136 ◽  
Author(s):  
Bikash Sahay ◽  
Alek Aranyos ◽  
Meerambika Mishra ◽  
Andrew McAvoy ◽  
Marcus Martin ◽  
...  

For the development of an effective HIV-1 vaccine, evolutionarily conserved epitopes between feline and human immunodeficiency viruses (FIV and HIV-1) were determined by analyzing overlapping peptides from retroviral genomes that induced both anti-FIV/HIV T cell-immunity in the peripheral blood mononuclear cells from the FIV-vaccinated cats and the HIV-infected humans. The conserved T-cell epitopes on p24 and reverse transcriptase were selected based on their robust FIV/HIV-specific CD8+ cytotoxic T lymphocyte (CTL), CD4+ CTL, and polyfunctional T-cell activities. Four such evolutionarily conserved epitopes were formulated into four multiple antigen peptides (MAPs), mixed with an adjuvant, to be tested as FIV vaccine in cats. The immunogenicity and protective efficacy were evaluated against a pathogenic FIV. More MAP/peptide-specific CD4+ than CD8+ T-cell responses were initially observed. By post-third vaccination, half of the MAP/peptide-specific CD8+ T-cell responses were higher or equivalent to those of CD4+ T-cell responses. Upon challenge, 15/19 (78.9%) vaccinated cats were protected, whereas 6/16 (37.5%) control cats remained uninfected, resulting in a protection rate of 66.3% preventable fraction (p = 0.0180). Thus, the selection method used to identify the protective FIV peptides should be useful in identifying protective HIV-1 peptides needed for a highly protective HIV-1 vaccine in humans.

2004 ◽  
Vol 78 (24) ◽  
pp. 13934-13942 ◽  
Author(s):  
N. N. Zheng ◽  
N. B. Kiviat ◽  
P. S. Sow ◽  
S. E. Hawes ◽  
A. Wilson ◽  
...  

ABSTRACT Human immunodeficiency virus type 2 (HIV-2) infection is typically less virulent than HIV-1 infection, which may permit the host to mount more effective, sustained T-cell immunity. We investigated antiviral gamma interferon-secreting T-cell responses by an ex vivo Elispot assay in 68 HIV-1- and 55 HIV-2-infected Senegalese patients to determine if differences relate to more efficient HIV-2 control. Homologous HIV-specific T cells were detected in similar frequencies (79% versus 76%, P = 0.7) and magnitude (3.12 versus 3.08 log10 spot-forming cells/106 peripheral blood mononuclear cells) in HIV-1 and HIV-2 infection, respectively. Gag-specific responses predominated in both groups (≥64%), and significantly higher Nef-specific responses occurred in HIV-1-infected (54%) than HIV-2-infected patients (22%) (P < 0.001). Heterologous responses were more frequent in HIV-1 than in HIV-2 infection (46% versus 27%, P = 0.04), but the mean magnitude was similar. Total frequencies of HIV-specific responses in both groups did not correlate with plasma viral load and CD4+ T-cell count in multivariate regression analyses. However, the magnitude of HIV-2 Gag-specific responses was significantly associated with lower plasma viremia in HIV-1-infected patients (P = 0.04). CD4+ T-helper responses, primarily recognizing HIV-2 Gag, were detected in 48% of HIV-2-infected compared to only 8% of HIV-1-infected patients. These findings indicate that improved control of HIV-2 infection may relate to the contribution of T-helper cell responses. By contrast, the superior control of HIV-1 replication associated with HIV-2 Gag responses suggests that these may represent cross-reactive, higher-avidity T cells targeting epitopes within Gag regions of functional importance in HIV replication.


2005 ◽  
Vol 79 (6) ◽  
pp. 3748-3757 ◽  
Author(s):  
S. Chea ◽  
C. J. Dale ◽  
R. De Rose ◽  
I. A. Ramshaw ◽  
S. J. Kent

ABSTRACT Advances in treating and preventing AIDS depend on understanding how human immunodeficiency virus (HIV) is eliminated in vivo and on the manipulation of effective immune responses to HIV. During the development of assays quantifying the elimination of fluorescent autologous cells coated with overlapping 15-mer simian immunodeficiency virus (SIV) or HIV-1 peptides, we made a remarkable observation: the reinfusion of macaque peripheral blood mononuclear cells, or even whole blood, pulsed with SIV and/or HIV peptides generated sharply enhanced SIV- and HIV-1-specific T-cell immunity. Strong, broad CD4+- and CD8+-T-cell responses could be enhanced simultaneously against peptide pools spanning 87% of all SIV- and HIV-1-expressed proteins—highly desirable characteristics of HIV-specific immunity. De novo hepatitis C virus-specific CD4+- and CD8+-T-cell responses were generated in macaques by the same method. This simple technique holds promise for the immunotherapy of HIV and other chronic viral infections.


2005 ◽  
Vol 35 (5) ◽  
pp. 1445-1453 ◽  
Author(s):  
Geraldine?M.?A. Gillespie ◽  
Susana Pinheiro ◽  
Mohammad Sayeid-Al-Jamee ◽  
Abraham Alabi ◽  
Steve Kaye ◽  
...  

2019 ◽  
Vol 17 (5) ◽  
pp. 350-359
Author(s):  
Liliana Acevedo-Saenz ◽  
Federico Perdomo-Celis ◽  
Carlos J. Montoya ◽  
Paula A. Velilla

Background: : The diversity of the HIV proteome influences the cellular response and development of an effective vaccine, particularly due to the generation of viral variants with mutations located within CD8+ T-cell epitopes. These mutations can affect the recognition of the epitopes, that may result in the selection of HIV variants with mutated epitopes (autologous epitopes) and different CD8+ T-cell functional profiles. Objective:: To determine the phenotype and functionality of CD8+ T-cell from HIV-infected Colombian patients in response to autologous and consensus peptides derived from HIV-1 clade B protease and reverse transcriptase (RT). Methods:: By flow cytometry, we compared the ex vivo CD8+ T-cell responses from HIV-infected patients to autologous and consensus peptides derived from HIV-1 clade B protease and RT, restricted by HLA-B*35, HLA-B*44 and HLA-B*51 alleles. Results:: Although autologous peptides restricted by HLA-B*35 and HLA-B*44 did not show any differences compared with consensus peptides, we observed the induction of a higher polyfunctional profile of CD8+ T-cells by autologous peptides restricted by HLA-B*51, particularly by the production of interferon-γ and macrophage inflammatory protein-1β. The response by different memory CD8+ T-cell populations was comparable between autologous vs. consensus peptides. In addition, the magnitude of the polyfunctional response induced by the HLA-B*51-restricted QRPLVTIRI autologous epitope correlated with low viremia. Conclusion:: Autologous peptides should be considered for the evaluation of HIV-specific CD8+ Tcell responses and to reveal some relevant epitopes that could be useful for therapeutic strategies aiming to promote polyfunctional CD8+ T-cell responses in a specific population of HIV-infected patients.


Vaccine ◽  
2010 ◽  
Vol 28 (37) ◽  
pp. 6052-6057 ◽  
Author(s):  
Coral-Ann M. Almeida ◽  
Steven G. Roberts ◽  
Rebecca Laird ◽  
Elizabeth McKinnon ◽  
Imran Ahmad ◽  
...  

2010 ◽  
Vol 84 (12) ◽  
pp. 5898-5908 ◽  
Author(s):  
Maximillian Rosario ◽  
Richard Hopkins ◽  
John Fulkerson ◽  
Nicola Borthwick ◽  
Máire F. Quigley ◽  
...  

ABSTRACT Mycobacterium bovis bacillus Calmette-Guérin (BCG), which elicits a degree of protective immunity against tuberculosis, is the most widely used vaccine in the world. Due to its persistence and immunogenicity, BCG has been proposed as a vector for vaccines against other infections, including HIV-1. BCG has a very good safety record, although it can cause disseminated disease in immunocompromised individuals. Here, we constructed a recombinant BCG vector expressing HIV-1 clade A-derived immunogen HIVA using the recently described safer and more immunogenic BCG strain AERAS-401 as the parental mycobacterium. Using routine ex vivo T-cell assays, BCG.HIVA401 as a stand-alone vaccine induced undetectable and weak CD8 T-cell responses in BALB/c mice and rhesus macaques, respectively. However, when BCG.HIVA401 was used as a priming component in heterologous vaccination regimens together with recombinant modified vaccinia virus Ankara-vectored MVA.HIVA and ovine atadenovirus-vectored OAdV.HIVA vaccines, robust HIV-1-specific T-cell responses were elicited. These high-frequency T-cell responses were broadly directed and capable of proliferation in response to recall antigen. Furthermore, multiple antigen-specific T-cell clonotypes were efficiently recruited into the memory pool. These desirable features are thought to be associated with good control of HIV-1 infection. In addition, strong and persistent T-cell responses specific for the BCG-derived purified protein derivative (PPD) antigen were induced. This work is the first demonstration of immunogenicity for two novel vaccine vectors and the corresponding candidate HIV-1 vaccines BCG.HIVA401 and OAdV.HIVA in nonhuman primates. These results strongly support their further exploration.


PLoS ONE ◽  
2008 ◽  
Vol 3 (10) ◽  
pp. e3577 ◽  
Author(s):  
J. William Critchfield ◽  
Delandy H. Young ◽  
Timothy L. Hayes ◽  
Jerome V. Braun ◽  
Juan C. Garcia ◽  
...  

2005 ◽  
Vol 26 (3) ◽  
pp. 166-171 ◽  
Author(s):  
Mathias Lichterfeld ◽  
Xu G. Yu ◽  
Sylvie Le Gall ◽  
Marcus Altfeld

2021 ◽  
Author(s):  
Karolin I. Wagner ◽  
Laura M. Mateyka ◽  
Sebastian Jarosch ◽  
Vincent Grass ◽  
Simone Weber ◽  
...  

T cell immunity is crucial for the control of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections and has been widely characterized on a quantitative level. In contrast, the quality of such T cell responses has been poorly investigated, in particular in the case of CD8+ T cells. Here, we explored the quality of SARS-CoV-2-specific CD8+ T cell responses in individuals who recovered from mild symptomatic infections, through which protective immunity should develop, by functional characterization of their T cell receptor (TCR) repertoire. CD8+ T cell responses specific for SARS-CoV-2-derived epitopes were low in frequency but could be detected robustly early as well as late - up to twelve months - after infection. A pool of immunodominant epitopes, which accurately identified previous SARSCoV- 2 infections, was used to isolate TCRs specific for epitopes restricted by common HLA class I molecules. TCR-engineered T cells showed heterogeneous functional avidity and cytotoxicity towards virus-infected target cells. High TCR functionality correlated with gene signatures of T cell function and activation that, remarkably, could be retrieved for each epitope:HLA combination and patient analyzed. Overall, our data demonstrate that highly functional HLA class I TCRs are recruited and maintained upon mild SARS-CoV-2 infection. Such validated epitopes and TCRs could become valuable tools for the development of diagnostic tests determining the quality of SARS-CoV-2-specific CD8+ T cell immunity, and thereby investigating correlates of protection, as well as to restore functional immunity through therapeutic transfer of TCR-engineered T cells.


Sign in / Sign up

Export Citation Format

Share Document