scholarly journals Filovirus Virulence in Interferon α/β and γ Double Knockout Mice, and Treatment with Favipiravir

Viruses ◽  
2019 ◽  
Vol 11 (2) ◽  
pp. 137 ◽  
Author(s):  
Jason Comer ◽  
Olivier Escaffre ◽  
Natasha Neef ◽  
Trevor Brasel ◽  
Terry Juelich ◽  
...  

The 2014 Ebolavirus outbreak in West Africa highlighted the need for vaccines and therapeutics to prevent and treat filovirus infections. A well-characterized small animal model that is susceptible to wild-type filoviruses would facilitate the screening of anti-filovirus agents. To that end, we characterized knockout mice lacking α/β and γ interferon receptors (IFNAGR KO) as a model for wild-type filovirus infection. Intraperitoneal challenge of IFNAGR KO mice with several known human pathogenic species from the genus Ebolavirus and Marburgvirus, except Bundibugyo ebolavirus and Taï Forest ebolavirus, caused variable mortality rate. Further characterization of the prototype Ebola virus Kikwit isolate infection in this KO mouse model showed 100% lethality down to a dilution equivalent to 1.0 × 10−1 pfu with all deaths occurring between 7 and 9 days post-challenge. Viral RNA was detectable in serum after challenge with 1.0 × 102 pfu as early as one day after infection. Changes in hematology and serum chemistry became pronounced as the disease progressed and mirrored the histological changes in the spleen and liver that were also consistent with those described for patients with Ebola virus disease. In a proof-of-principle study, treatment of Ebola virus infected IFNAGR KO mice with favipiravir resulted in 83% protection. Taken together, the data suggest that IFNAGR KO mice may be a useful model for early screening of anti-filovirus medical countermeasures.

Pathogens ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 292
Author(s):  
Trevor Brasel ◽  
Jason E. Comer ◽  
Shane Massey ◽  
Jeanon Smith ◽  
Jennifer Smith ◽  
...  

Recent studies have shown the domestic ferret (Mustela putorius furo) to be a promising small animal model for the study of Ebola virus (EBOV) disease and medical countermeasure evaluation. To date, most studies have focused on traditional challenge routes, predominantly intramuscular and intranasal administration. Here, we present results from a non-clinical pathogenicity study examining oronasal, oral, and ocular mucosal challenge routes in ferrets. Animals were challenged with 1, 10, or 100 plaque forming units EBOV followed by monitoring of disease progression and biosampling. Ferrets administered virus via oronasal and oral routes met euthanasia criteria due to advanced disease 5–10 days post-challenge. Conversely, all ferrets dosed via the ocular route survived until the scheduled study termination 28-day post-challenge. In animals that succumbed to disease, a dose/route response was not observed; increases in disease severity, febrile responses, serum and tissue viral load, alterations in clinical pathology, and gross/histopathology findings were similar between subjects. Disease progression in ferrets challenged via ocular administration was unremarkable throughout the study period. Results from this study further support the ferret as a model for EBOV disease following oral and nasal mucosa exposure.


2004 ◽  
Vol 504 (1-2) ◽  
pp. 55-59 ◽  
Author(s):  
Mary Kelly ◽  
Alexis Bailey ◽  
Catherine Ledent ◽  
Ian Kitchen ◽  
Susanna Hourani

2010 ◽  
Vol 298 (2) ◽  
pp. G143-G150 ◽  
Author(s):  
Willemijntje A. Hoogerwerf ◽  
Vahakn B. Shahinian ◽  
Germaine Cornélissen ◽  
Franz Halberg ◽  
Jonathon Bostwick ◽  
...  

Human bowel movements usually occur during the day and seldom during the night, suggesting a role for a biological clock in the regulation of colonic motility. Research has unveiled molecular and physiological mechanisms for biological clock function in the brain; less is known about peripheral rhythmicity. This study aimed to determine whether clock genes such as period 1 ( per1) and period2 ( per2) modulate rhythmic changes in colonic motility. Organ bath studies, intracolonic pressure measurements, and stool studies were used to examine measures of colonic motility in wild-type and per1per2 double-knockout mice. To further examine the mechanism underlying rhythmic changes in circular muscle contractility, additional studies were completed in neuronal nitric oxide synthase (nNOS) knockout mice. Intracolonic pressure changes and stool output in vivo, and colonic circular muscle contractility ex vivo, are rhythmic with greatest activity at the start of night in nocturnal wild-type mice. In contrast, rhythmicity in these measures was absent in per1per2 double-knockout mice. Rhythmicity was also abolished in colonic circular muscle contractility of wild-type mice in the presence of Nω-nitro-l-arginine methyl ester and in nNOS knockout mice. These findings suggest that rhythms in colonic motility are regulated by both clock genes and a nNOS-mediated inhibitory process and suggest a connection between these two mechanisms.


2015 ◽  
Vol 212 (suppl 2) ◽  
pp. S282-S294 ◽  
Author(s):  
Jennifer M. Brannan ◽  
Jeffery W. Froude ◽  
Laura I. Prugar ◽  
Russell R. Bakken ◽  
Samantha E. Zak ◽  
...  

2005 ◽  
Vol 289 (6) ◽  
pp. F1195-F1200 ◽  
Author(s):  
Eisei Sohara ◽  
Tatemitsu Rai ◽  
Jun-ichi Miyazaki ◽  
A. S. Verkman ◽  
Sei Sasaki ◽  
...  

The aquaporin-7 (AQP7) water channel is known as a member of the aquaglyceroporins, which facilitate the transport of glycerol as well as water. Although AQP7 is abundantly expressed on the apical membrane of the proximal straight tubules in the kidney, the physiological role of AQP7 is still unknown. To investigate this, we generated AQP7 knockout mice. The water permeability of the proximal tubule brush-border membrane measured by the stopped-flow method was slightly but significantly reduced in the AQP7 knockout mice compared with that of wild-type mice (AQP7, 18.0 ± 0.4 × 10−3 cm/s vs. wild-type, 20.0 ± 0.3 × 10−3 cm/s). Although AQP7 solo-knockout mice did not exhibit a urinary concentrating defect, AQP1/AQP7 double-knockout mice had a reduction in urinary concentrating ability compared with AQP1 solo-knockout mice, suggesting that the amount of water reabsorbed through AQP7 in the proximal straight tubules is physiologically substantial. On the other hand, AQP7 knockout mice showed marked glyceroluria (AQP7, 1.7 ± 0.34 mg/ml vs. wild-type, 0.005 ± 0.002 mg/ml). This identified a novel glycerol reabsorption pathway in the proximal straight tubules. In two mouse models of proximal straight tubule injury, the cisplatin-induced acute renal failure (ARF) model and the ischemic ARF model, an increase in urine glycerol was observed (pretreatment, 0.007 ± 0.005 mg/ml; cisplatin, 0.063 ± 0.043 mg/ml; ischemia, 0.076 ± 0.02 mg/ml), suggesting that urine glycerol could be used as a new biomarker for detecting proximal straight tubule injury.


2021 ◽  
Vol 22 (24) ◽  
pp. 13507
Author(s):  
Junru Miao ◽  
Wei Chen ◽  
Pengxiang Wang ◽  
Xin Zhang ◽  
Lei Wang ◽  
...  

MFN1 (Mitofusin 1) and MFN2 (Mitofusin 2) are GTPases essential for mitochondrial fusion. Published studies revealed crucial roles of both Mitofusins during embryonic development. Despite the unique mitochondrial organization in sperm flagella, the biological requirement in sperm development and functions remain undefined. Here, using sperm-specific Cre drivers, we show that either Mfn1 or Mfn2 knockout in haploid germ cells does not affect male fertility. The Mfn1 and Mfn2 double knockout mice were further analyzed. We found no differences in testis morphology and weight between Mfn-deficient mice and their wild-type littermate controls. Spermatogenesis was normal in Mfn double knockout mice, in which properly developed TRA98+ germ cells, SYCP3+ spermatocytes, and TNP1+ spermatids/spermatozoa were detected in seminiferous tubules, indicating that sperm formation was not disrupted upon MFN deficiency. Collectively, our findings reveal that both MFN1 and MFN2 are dispensable for sperm development and functions in mice.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 3451-3451
Author(s):  
Dominic W Chung ◽  
Junmei Chen ◽  
Minhua Ling ◽  
Taisha Doo ◽  
Teri Blevens ◽  
...  

Abstract Von Willebrand factor (VWF) is a plasma glycoprotein that mediates platelet adhesion at sites of vessel injury. It is synthesized in megakaryocytes and endothelial cells and is assembled in the endoplasmic reticulum and Golgi into an array of multimers. Upon secretion from microvascular endothelium, VWF multimers can further self-associate under shear stress and form surface-bound fibers of potentially enormous sizes capable of spanning the lumens of vessels up to 300 mm in diameter (Zheng et al. Nature Communications 2015 In press). These structures are normally removed by the plasma metalloprotease ADAMTS13. However, when ADAMTS13 is inactivated or when massive VWF secretion overwhelms the capacity of ADAMTS13 to process VWF, these structures persist in the microcirculation and bind platelets avidly to form occlusive thrombi, a process characteristic of the devastating disease thrombotic thrombocytopenic purpura (TTP). These microvascular VWF-platelet thrombi have also been implicated in the microvascular dysfunction that accompanies malaria, sickle cell disease, and sepsis. We recently identified high density lipoprotein particles (HDL) as being able to prevent VWF self-association into thick strands (Chung et al. Blood 2015 in revision). In these studies, we also studied VWF self-association in citrated human plasma under shear stress in a test tube in the presence of EDTA (to inhibit ADAMTS13). VWF self-associated and adsorbed to the tube surface, a phenomenon prevented by addition of HDL at concentrations above those already present in plasma. When EDTA was not added to the plasma, the majority of the VWF was not cleaved but was nevertheless stabilized in solution. This result suggests that when ADAMTS13 has been progressively inactivated by citrate at 37°C, it is able to prevent VWF self-association. It is not clear why EDTA-inhibited ADAMTS13 did not stabilize VWF to the same extent as citrate-inhibited ADAMTS13. It is possible that EDTA and citrate have different effects on the stabilization function of ADAMTS13. Further, addition of recombinant ADAMTS13 to citrated plasma (final ratio VWF monomer:ADAMTS13 = 1.6:1) did not enhance VWF cleavage under shear, but completely stabilized the VWF multimers. These results demonstrate a new function for ADAMTS13: it regulates VWF adhesive activity by preventing VWF self-association through direct binding instead of cleavage. Therefore, we hypothesize that the relative levels of VWF, HDL, and ADAMTS13 in plasma regulate the propensity of VWF multimers to self-associate under shear stress. While high VWF levels and high shear stress favor VWF self-association, high HDL and ADAMTS13 levels prevent self-association. We tested the hypothesis with plasma from wild-type or knockout mice on the C57BL6 background. In comparison to humans, wild-type C57BL6 mice have low VWF levels, high HDL levels (calculated from HDL-cholesterol levels), and express a truncated version of ADAMTS13. Further, ADAMTS13-deficient C57BL6 mice do not spontaneously develop microvascular occlusion. Unlike human citrated plasma, when citrated plasma from wild-type mice was sheared in the presence of EDTA, the VWF multimers did not self-associate. We attributed this difference from human plasma to the low VWF:HDL ratio in this mouse strain. When the plasma from apolipoprotein (Apo) A-I knockout mice was sheared in the presence of EDTA, the VWF multimers also did not self-associate, which we attributed to the low VWF level and the ability of EDTA-inhibited truncated ADAMTS13 to stabilize VWF. When the plasma of a double knockout of ApoA-I and ADAMTS13 was sheared, the VWF self-associated and adsorbed to the tube surface. Addition of HDL to this double knockout plasma stabilized the VWF. The VWF antigen levels in wild-type, single and double knockout mouse plasma were comparable. Double knockout mice challenged with a bolus injection of VWF developed more severe thrombocytopenia than did mice with either single ApoA-I or ADAMTS13 deficiency. Together, these results suggest that ADAMTS13 synergizes with HDL in stabilizing VWF and dampening its self-association into hyperadhesive forms under shear stress, and that interplay between concentrations of VWF, ADAMTS13, and HDL particles can determine the propensity for developing TTP and its severity once developed. Disclosures No relevant conflicts of interest to declare.


2011 ◽  
Vol 301 (6) ◽  
pp. F1251-F1259 ◽  
Author(s):  
Tianluo Lei ◽  
Lei Zhou ◽  
Anita T. Layton ◽  
Hong Zhou ◽  
Xuejian Zhao ◽  
...  

Urea transporters UT-A2 and UT-B are expressed in epithelia of thin descending limb of Henle's loop and in descending vasa recta, respectively. To study their role and possible interaction in the context of the urine concentration mechanism, a UT-A2 and UT-B double knockout (UT-A2/B knockout) mouse model was generated by targeted deletion of the UT-A2 promoter in embryonic stem cells with UT-B gene knockout. The UT-A2/B knockout mice lacked detectable UT-A2 and UT-B transcripts and proteins and showed normal survival and growth. Daily urine output was significantly higher in UT-A2/B knockout mice than that in wild-type mice and lower than that in UT-B knockout mice. Urine osmolality in UT-A2/B knockout mice was intermediate between that in UT-B knockout and wild-type mice. The changes in urine osmolality and flow rate, plasma and urine urea concentration, as well as non-urea solute concentration after an acute urea load or chronic changes in protein intake suggested that UT-A2 plays a role in the progressive accumulation of urea in the inner medulla. These results suggest that in wild-type mice UT-A2 facilitates urea absorption by urea efflux from the thin descending limb of short loops of Henle. Moreover, UT-A2 deletion in UT-B knockout mice partially remedies the urine concentrating defect caused by UT-B deletion, by reducing urea loss from the descending limbs to the peripheral circulation; instead, urea is returned to the inner medulla through the loops of Henle and the collecting ducts.


2019 ◽  
Vol 16 (1) ◽  
Author(s):  
Michael D. Ward ◽  
Ernst E. Brueggemann ◽  
Tara Kenny ◽  
Raven E. Reitstetter ◽  
Christopher R. Mahone ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document