scholarly journals Soybean Cytochrome b5 Is a Restriction Factor for Soybean Mosaic Virus

Viruses ◽  
2019 ◽  
Vol 11 (6) ◽  
pp. 546 ◽  
Author(s):  
Hexiang Luan ◽  
Haopeng Niu ◽  
Jinyan Luo ◽  
Haijian Zhi

Soybean mosaic virus (SMV) is one of the most destructive viral diseases in soybeans (Glycine max). In this study, an interaction between the SMV P3 protein and cytochrome b5 was detected by yeast two-hybrid assay, and bimolecular fluorescence complementation assay showed that the interaction took place at the cell periphery. Further, the interaction was confirmed by co-immunoprecipitation analysis. Quantitative real-time polymerase chain reaction analysis revealed that GmCYB5 gene was differentially expressed in resistant and susceptible soybean plants after inoculation with SMV-SC15 strain. To test the involvement of this gene in SMV resistance, the GmCYB5 was silenced using a bean pod mottle virus (BPMV)-based vector construct. Results showed that GmCYB5-1 was 83% and 99% downregulated in susceptible (NN1138-2) and resistant (RN-9) cultivars, respectively, compared to the empty vector-treated plants. Silencing of GmCYB5 gene promotes SMV replication in soybean plants. Our results suggest that during SMV infection, the host CYB5 protein targets P3 protein to inhibit its proliferation. Taken together, these results suggest that CYB5 is an important factor in SMV infection and replication in soybeans, which could help soybean breeders develop SMV resistant soybean cultivars.

2016 ◽  
Vol 67 (5) ◽  
pp. 541 ◽  
Author(s):  
Na Li ◽  
Jin Long Yin ◽  
Cui Li ◽  
Da Gang Wang ◽  
Yong Qing Yang ◽  
...  

Soybean mosaic virus (SMV) causes one of the most destructive viral diseases in soybean (Glycine max). The soybean cultivar Dabaima carries the Rsc4 gene for SMV resistance. The genomic region containing Rsc4 was previously localised within a 100-kb region on chromosome 14. The corresponding region contains three complete nucleotide-binding site (NB) and leucine-rich repeat (LRR) type genes and one incomplete gene that is likely non-functional. Quantitative real-time polymerase chain reaction analysis revealed that three candidate genes encoding NB-LRR proteins were differentially expressed in resistant and susceptible lines when the plants were inoculated with SMV strain SC4. To test the involvement of the three candidate genes in Rsc4 mediated resistance, the three genes were silenced using a Bean pod mottle virus (BPMV)-based vector construct. Silencing of three candidate genes attenuated the Rsc4-mediated resistance and induced SMV symptoms in Dabaima plants. Moreover, Rsc4 candidate genes were 78% downregulated when compared with the empty BPMV vector-treated plants. From these results, we concluded that at least one of the three candidate genes encoding NB-LRR proteins is required for Rsc4 resistance to SMV.


Plant Disease ◽  
2003 ◽  
Vol 87 (11) ◽  
pp. 1333-1336 ◽  
Author(s):  
H. A. Hobbs ◽  
G. L. Hartman ◽  
Y. Wang ◽  
C. B. Hill ◽  
R. L. Bernard ◽  
...  

Soybean seed coat mottling often has been a problematic symptom for soybean growers and the soybean industry. The percentages of seed in eight soybean lines with seed coat mottling were evaluated at harvest after inoculating plants during the growing season with Bean pod mottle virus (BPMV), Soybean mosaic virus (SMV), and both viruses inside an insect-proof cage in the field. Results from experiments conducted over 2 years indicated that plants infected with BPMV and SMV, alone or in combination, produced seed coat mottling, whereas noninoculated plants produced little or no mottled seed. BPMV and SMV inoculated on the same plants did not always result in higher percentages of mottled seed compared with BPMV or SMV alone. There was significant virus, line, and virus-line interaction for seed coat mottling. The non-seed-coat-mottling gene (Im) in Williams isoline L77-5632 provided limited, if any, protection against mottling caused by SMV and none against BPMV. The Peanut mottle virus resistance gene Rpv1 in Williams isoline L85-2308 did not give any protection against mottling caused by SMV, whereas the SMV resistance gene Rsv1 in Williams isoline L78-379 and the resistance gene or genes in the small-seeded line L97-946 gave high levels of protection against mottling caused by SMV. The correlations (r = 0.77 for year 2000 and r = 0.89 for year 2001) between virus infection of the parent plant and seed coat mottling were significant (P = 0.01), indicating that virus infection of plants caused seed coat mottling.


2011 ◽  
Vol 101 (11) ◽  
pp. 1264-1269 ◽  
Author(s):  
Xiuchun Zhang ◽  
Shirley Sato ◽  
Xiaohong Ye ◽  
Anne E. Dorrance ◽  
T. Jack Morris ◽  
...  

Transgenic plants expressing double-stranded RNA (dsRNA) of virus origin have been previously shown to confer resistance to virus infections through the highly conserved RNA-targeting process termed RNA silencing or RNA interference (RNAi). In this study we applied this strategy to soybean plants and achieved robust resistance to multiple viruses with a single dsRNA-expressing transgene. Unlike previous reports that relied on the expression of one long inverted repeat (IR) combining sequences of several viruses, our improved strategy utilized a transgene designed to express several shorter IRs. Each of these short IRs contains highly conserved sequences of one virus, forming dsRNA of less than 150 bp. These short dsRNA stems were interspersed with single-stranded sequences to prevent homologous recombination during the transgene assembly process. Three such short IRs with sequences of unrelated soybean-infecting viruses (Alfalfa mosaic virus, Bean pod mottle virus, and Soybean mosaic virus) were assembled into a single transgene under control of the 35S promoter and terminator of Cauliflower mosaic virus. Three independent transgenic lines were obtained and all of them exhibited strong systemic resistance to the simultaneous infection of the three viruses. These results demonstrate the effectiveness of this very straight forward strategy for engineering RNAi-based virus resistance in a major crop plant. More importantly, our strategy of construct assembly makes it easy to incorporate additional short IRs in the transgene, thus expanding the spectrum of virus resistance. Finally, this strategy could be easily adapted to control virus problems of other crop plants.


Plant Disease ◽  
2002 ◽  
Vol 86 (11) ◽  
pp. 1219-1222 ◽  
Author(s):  
A. J. Clark ◽  
K. L. Perry

During the 2001 growing season, 191 symptomatic soybean (Glycine max (L.) Merr.) plants were dug from production plots in Indiana, Wisconsin, and Kentucky. Alfalfa mosaic virus (AMV), Bean pod mottle virus (BPMV), Bean yellow mosaic virus (BYMV), Peanut stunt virus (PSV), Tobacco ringspot virus (TRSV), and Soybean mosaic virus (SMV) were identified. No mixed infections were observed. The ability of the soybean aphid (Aphis glycines Matsamura) to transmit field isolates of these viruses was tested. Using naturally infected field- or greenhouse-grown soybean plants as sources, six isolates of SMV and two isolates of AMV were transmitted using a short feeding assay. One of two isolates of TRSV was transmitted by A. glycines in one of four experiments using an extended feeding transmission assay. BPMV was not transmitted by A. glycines in assays involving 11 field isolates and over 840 aphids. One field isolate each of BYMV and PSV were tested and no transmission by A. glycines was observed.


2021 ◽  
Author(s):  
Kai Zhang ◽  
Yingchao Shen ◽  
Tao Wang ◽  
Yu Wang ◽  
Song Xue ◽  
...  

The leaves of soybean cv. ZheA8901 show various symptoms (necrosis, mosaic and symptomless) when infected with different strains of Soybean mosaic virus (SMV). Based on a proteomic analysis performed with tandem mass tags (TMT), 736 proteins were differentially expressed from soybean samples that showed asymptomatic, mosaic and necrosis symptoms induced by SMV strains SC3, SC7, and SC15, respectively. Among these, GmGSTU13 and APX (ascorbate peroxidase) were only upregulated in mosaic and symptomless leaves, respectively. The protein level of GmGSTU13 determined by Western blot was consistent with TMT analysis, qRT-PCR analysis showed that GmGSTU13 mRNA levels in mosaic plants was 5.26- and 3.75-fold higher than that in necrotic and symptomless plants, respectively. Additionally, the expression of viral coat protein (CP) gene was increased, and serious mosaic symptoms were observed in GmGSTU13-overexpressing plants inoculated with all three SMV strains. These results showed that GmGSTU13 is associated with the development of SMV-induced mosaic symptoms in soybean and that APX is upregulated in symptomless leaves at both the transcriptional and protein levels. In APX gene-silenced soybean plants, the relative expression of the viral CP gene was 1.50, 7.59 and 1.30 times higher than in positive control plants inoculated with the three SMV strains, suggesting that the upregulation of APX may be associated with lack of symptoms in soybean infected with SMV. This work provides a useful dataset for identifying key proteins responsible for symptom development in soybean infected with different SMV strains.


2016 ◽  
Vol 30 (10) ◽  
pp. 1648-1659 ◽  
Author(s):  
Maria Fernanda G. V. Peñaflor ◽  
Kerry E. Mauck ◽  
Kelly J. Alves ◽  
Consuelo M. De Moraes ◽  
Mark C. Mescher

2011 ◽  
Vol 101 (6) ◽  
pp. 750-756 ◽  
Author(s):  
Leslie L. Domier ◽  
Houston A. Hobbs ◽  
Nancy K. McCoppin ◽  
Charles R. Bowen ◽  
Todd A. Steinlage ◽  
...  

Infection of soybean plants with Soybean mosaic virus (SMV), which is transmitted by aphids and through seed, can cause significant reductions in seed production and quality. Because seedborne infections are the primary sources of inoculum for SMV infections in North America, host-plant resistance to seed transmission can limit the pool of plants that can serve as sources of inoculum. To examine the inheritance of SMV seed transmission in soybean, crosses were made between plant introductions (PIs) with high (PI88799), moderate (PI60279), and low (PI548391) rates of transmission of SMV through seed. In four F2 populations, SMV seed transmission segregated as if conditioned by two or more genes. Consequently, a recombinant inbred line population was derived from a cross between PIs 88799 and 548391 and evaluated for segregation of SMV seed transmission, seed coat mottling, and simple sequence repeat markers. Chromosomal regions on linkage groups C1 and C2 were significantly associated with both transmission of isolate SMV 413 through seed and SMV-induced seed coat mottling, and explained ≈42.8 and 46.4% of the variability in these two traits, respectively. Chromosomal regions associated with seed transmission and seed coat mottling contained homologues of Arabidopsis genes DCL3 and RDR6, which encode enzymes involved in RNA-mediated transcriptional and posttranscriptional gene silencing.


2006 ◽  
Vol 7 (1) ◽  
pp. 37 ◽  
Author(s):  
Loren J. Giesler ◽  
Amy D. Ziems

The incidence of soybean viruses is increasing across the North Central Region of the United States as indicated by survey efforts and grower reports from several states. To determine the level of virus infection in Nebraska, we surveyed soybean fields for two consecutive years. Alfalfa mosaic virus (AMV) was detected in 52% of the fields in 2001 and in 56% of fields in 2002. The incidence of Bean pod mottle virus (BPMV) varied more, with 54% of fields testing positive in 2001 and 91% testing positive in 2002. Soybean mosaic virus (SMV) was not detected in 2001, but it was detected in 31% of fields in 2002. The widespread distribution of detected SMV in 2002 is suggestive of introduction with seed. The incidence of BPMV was significantly higher in fields planted earlier than the recommended optimum planting date in one of the two years studied. The widespread incidence of AMV and BPMV and the irregular occurrence of SMV indicate that further studies of soybean viral diseases in Nebraska are warranted. Accepted for publication 13 March 2006. Published 24 April 2006.


Sign in / Sign up

Export Citation Format

Share Document