scholarly journals When Dendritic Cells Go Viral: The Role of Siglec-1 in Host Defense and Dissemination of Enveloped Viruses

Viruses ◽  
2019 ◽  
Vol 12 (1) ◽  
pp. 8 ◽  
Author(s):  
Daniel Perez-Zsolt ◽  
Javier Martinez-Picado ◽  
Nuria Izquierdo-Useros

Dendritic cells (DCs) are among the first cells that recognize incoming viruses at the mucosal portals of entry. Initial interaction between DCs and viruses facilitates cell activation and migration to secondary lymphoid tissues, where these antigen presenting cells (APCs) prime specific adaptive immune responses. Some viruses, however, have evolved strategies to subvert the migratory capacity of DCs as a way to disseminate infection systemically. Here we focus on the role of Siglec-1, a sialic acid-binding type I lectin receptor potently upregulated by type I interferons on DCs, that acts as a double edge sword, containing viral replication through the induction of antiviral immunity, but also favoring viral spread within tissues. Such is the case for distant enveloped viruses like human immunodeficiency virus (HIV)-1 or Ebola virus (EBOV), which incorporate sialic acid-containing gangliosides on their viral membrane and are effectively recognized by Siglec-1. Here we review how Siglec-1 is highly induced on the surface of human DCs upon viral infection, the way this impacts different antigen presentation pathways, and how enveloped viruses have evolved to exploit these APC functions as a potent dissemination strategy in different anatomical compartments.

2019 ◽  
Vol 20 (4) ◽  
pp. 895 ◽  
Author(s):  
Qiang Li ◽  
Chunfa Liu ◽  
Ruichao Yue ◽  
Saeed El-Ashram ◽  
Jie Wang ◽  
...  

Cyclic GMP-AMP synthase (cGAS) is an important cytosolic DNA sensor that plays a crucial role in triggering STING-dependent signal and inducing type I interferons (IFNs). cGAS is important for intracellular bacterial recognition and innate immune responses. However, the regulating effect of the cGAS pathway for bone marrow-derived dendritic cells (BMDCs) during Mycobacterium bovis (M. bovis) infection is still unknown. We hypothesized that the maturation and activation of BMDCs were modulated by the cGAS/STING/TBK1/IRF3 signaling pathway. In this study, we found that M. bovis promoted phenotypic maturation and functional activation of BMDCs via the cGAS signaling pathway, with the type I IFN and its receptor (IFNAR) contributing. Additionally, we showed that the type I IFN pathway promoted CD4+ T cells’ proliferation with BMDC during M. bovis infection. Meanwhile, the related cytokines increased the expression involved in this signaling pathway. These data highlight the mechanism of the cGAS and type I IFN pathway in regulating the maturation and activation of BMDCs, emphasizing the important role of this signaling pathway and BMDCs against M. bovis. This study provides new insight into the interaction between cGAS and dendritic cells (DCs), which could be considered in the development of new drugs and vaccines against tuberculosis.


2008 ◽  
Vol 82 (16) ◽  
pp. 8149-8160 ◽  
Author(s):  
Andreas Oliver Weinzierl ◽  
Gudrun Szalay ◽  
Hartwig Wolburg ◽  
Martina Sauter ◽  
Hans-Georg Rammensee ◽  
...  

ABSTRACT Enteroviruses such as coxsackievirus B3 (CVB3) are able to induce lethal acute and chronic myocarditis. In resistant C57BL/6 mice, CVB3 myocarditis is abrogated by T-cell-dependent mechanisms, whereas major histocompatibility complex (MHC)-matched permissive A.BY/SnJ mice develop chronic myocarditis based on virus persistence. To define the role of T-cell-priming dendritic cells (DCs) in the outcome of CVB3 myocarditis, DCs were analyzed in this animal model in the course of CVB3 infection. In both mouse strains, DCs were found to be infectible with CVB3; however, formation of infectious virions was impaired. In DCs derived from C57BL/6 mice, significantly higher quantities of interleukin-10 (IL-10) and the proinflammatory cytokines IL-6 and tumor necrosis factor alpha were measured compared to those from A.BY/SnJ mice. Additionally, the chemokines interferon-inducible protein 10 (IP-10) and RANTES were secreted by DCs from resistant C57BL/6 mice earlier in infection and at significantly higher levels. The protective role of IP-10 in CVB3 myocarditis was confirmed in IP-10−/− mice, which had increased myocardial injury compared to the immunocompetent control animals. Also, major differences in resistant and permissive mice were found in DC subsets, with C57BL/6 mice harboring more cross-priming CD4− CD8+ DCs. As CD4− CD8+ DCs are known to express 10 times more Toll-like receptor 3 (TLR3) than other DC subsets, we followed the course of CVB3 infection in TLR3−/− mice. These mice developed a fulminant acute myocarditis and secreted sustained low amounts of type I interferons; secretion of IP-10 and RANTES was nearly abrogated in DCs. We conclude that MHC-independent genetic factors involving DC-related IP-10 secretion and TLR3 expression are beneficial in the prevention of chronic coxsackievirus myocarditis.


2019 ◽  
Author(s):  
Rajesh Lamichhane ◽  
Henry Galvin ◽  
Rachel F Hannaway ◽  
Sara M de la Harpe ◽  
Fran Munro ◽  
...  

AbstractMucosal associated invariant T (MAIT) cells are abundant unconventional T cells which can be stimulated either via their T cell receptor (TCR) or by innate cytokines. The MAIT cell TCR recognises a pyrimidine ligand, derived from riboflavin synthesising bacteria, bound to MR1. In infection, bacteria not only provide the pyrimidine ligand but also co-stimulatory signals, such as Toll-like receptor agonists, that can modulate TCR-mediated activation. Recently, type I interferons (T1-IFNs) have been identified as contributing to cytokine-mediated MAIT cell activation. However, it is unknown whether T1-IFNs also have a role during TCR-mediated MAIT cell activation. In this study, we investigated the co-stimulatory role of T1-IFNs during TCR-mediated activation of MAIT cells by the MR1 ligand 5-amino-6-D-ribitylaminouracil/methylglyoxal (5-A-RU/MG). We found that T1-IFNs were able to boost interferon-γ and granzyme B production in 5-A-RU/MG-stimulated MAIT cells. Similarly, influenza virus-induced T1-IFNs enhanced TCR-mediated MAIT cell activation. An essential role of T1-IFNs in regulating MAIT cell activation by riboflavin synthesising bacteria was also demonstrated. The co-stimulatory role of T1-IFNs was confirmed using liver-derived MAIT cells. T1-IFNs acted directly on MAIT cells to enhance their response to TCR stimulation. Overall, our findings establish an important immunomodulatory role of T1-IFNs during TCR-mediated MAIT cell activation.


2018 ◽  
Author(s):  
Antonios Psarras ◽  
Adewonuola Alase ◽  
Agne Antanaviciute ◽  
Ian M. Carr ◽  
Md Yuzaiful Md Yusof ◽  
...  

ABSTRACTAutoimmune connective tissue diseases arise in a stepwise fashion from asymptomatic preclinical autoimmunity. Type I interferons (IFNs) have a crucial role in the progression to established autoimmune diseases such as systemic lupus erythematosus (SLE). However, their cellular source and regulation in disease initiation are unclear. The current paradigm suggests that plasmacytoid dendritic cells (pDCs) are activated in SLE contributing to excessive IFN production. Here, we show that in preclinical autoimmunity, established SLE, and primary Sjögren’s Syndrome, pDCs are not effector cells, but rather have lost their capacity for TLR-mediated IFN-α and TNF production and fail to induce T cell activation, independently of disease activity and blood IFN signature. In addition, pDCs present a transcriptional signature of cellular stress and senescence accompanied by increased telomere erosion. Instead, we demonstrate a marked enrichment of IFN signature in non-lesional skin in preclinical autoimmunity. In these individuals and SLE patients, type I IFNs were abundantly produced by keratinocytes in the absence of infiltrating leucocytes. These findings revise our understanding of the role of IFN in the initiation of human autoimmunity, with non-haematopoietic tissues perpetuating IFN responses, which in turn predict clinical disease. These data indicate potential therapeutic targets outside the conventional immune system for treatment and prevention.


2008 ◽  
Vol 31 (4) ◽  
pp. 13
Author(s):  
Martin Hyrcza ◽  
Mario Ostrowski ◽  
Sandy Der

Plasmacytoid dendritic cells (pDCs) are innate immune cells able to produce large quantities of type I interferons (IFN) when activated. Human immunodeficiency virus (HIV)-infected patients show generalized immune dysfunction characterized in part by chronic interferon response. In this study we investigated the role of dendritic cells inactivating and maintaining this response. Specifically we compared the IFN geneactivity in pDCs in response to several viruses and TLR agonists. We hypothesized that 1) the pattern of IFN gene transcription would differ in pDCs treated with HIV than with other agents, and 2) that pDCs from patients from different stages of disease would respond differently to the stimulations. To test these hypotheses, we obtained pDCs from 15 HIV-infected and uninfected individuals and treated freshly isolated pDCs with either HIV (BAL strain), influenza virus (A/PR/8/34), Sendai virus (Cantell strain), TLR7 agonist(imiquimod), or TLR9 agonist (CpG-ODN) for 6h. Type I IFN gene transcription was monitored by real time qPCRfor IFNA1, A2, A5, A6, A8,A17, B1, and E1, and cytokine levels were assayed by Cytometric Bead Arrays forTNF?, IL6, IL8, IL10, IL1?, and IL12p70. pDC function as determined by these two assays showed no difference between HIV-infected and uninfected patients or between patients with early or chronic infection. Specifically, HIV did notinduce type I IFN gene expression, whereas influenza virus, Sendai virus and imiquimod did. Similarly, HIV failed to induce any cytokine release from pDCs in contrast to influenza virus, Sendai virus and imiquimod, which stimulatedrelease of TNF?, IL6, or IL8. Together these results suggest that the reaction of pDCs to HIV virus is quantitatively different from the response to agents such as virus, Sendai virus, and imiquimod. In addition, pDCs from HIV-infected persons have responses similar to pDCs from uninfected donors, suggesting, that the DC function may not be affected by HIV infection.


2009 ◽  
Vol 5 (2) ◽  
pp. 143-149
Author(s):  
Marja Ojaniemi ◽  
Mari Liljeroos ◽  
Reetta Vuolteenaho

Pathogens ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 675
Author(s):  
Samira Elmanfi ◽  
Mustafa Yilmaz ◽  
Wilson W. S. Ong ◽  
Kofi S. Yeboah ◽  
Herman O. Sintim ◽  
...  

Host cells can recognize cytosolic double-stranded DNAs and endogenous second messengers as cyclic dinucleotides—including c-di-GMP, c-di-AMP, and cGAMP—of invading microbes via the critical and essential innate immune signaling adaptor molecule known as STING. This recognition activates the innate immune system and leads to the production of Type I interferons and proinflammatory cytokines. In this review, we (1) focus on the possible role of bacterial cyclic dinucleotides and the STING/TBK1/IRF3 pathway in the pathogenesis of periodontal disease and the regulation of periodontal immune response, and (2) review and discuss activators and inhibitors of the STING pathway as immune response regulators and their potential utility in the treatment of periodontitis. PubMed/Medline, Scopus, and Web of Science were searched with the terms “STING”, “TBK 1”, “IRF3”, and “cGAS”—alone, or together with “periodontitis”. Current studies produced evidence for using STING-pathway-targeting molecules as part of anticancer therapy, and as vaccine adjuvants against microbial infections; however, the role of the STING/TBK1/IRF3 pathway in periodontal disease pathogenesis is still undiscovered. Understanding the stimulation of the innate immune response by cyclic dinucleotides opens a new approach to host modulation therapies in periodontology.


Sign in / Sign up

Export Citation Format

Share Document