scholarly journals Buprenorphine Increases HIV-1 Infection In Vitro but Does Not Reactivate HIV-1 from Latency

Viruses ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1472
Author(s):  
Germán Gustavo Gornalusse ◽  
Lucia N. Vojtech ◽  
Claire N. Levy ◽  
Sean M. Hughes ◽  
Yeseul Kim ◽  
...  

Background: medication-assisted treatment (MAT) with buprenorphine is now widely prescribed to treat addiction to heroin and other illicit opioids. There is some evidence that illicit opioids enhance HIV-1 replication and accelerate AIDS pathogenesis, but the effect of buprenorphine is unknown. Methods: we obtained peripheral blood mononuclear cells (PBMCs) from healthy volunteers and cultured them in the presence of morphine, buprenorphine, or methadone. We infected the cells with a replication-competent CCR5-tropic HIV-1 reporter virus encoding a secreted nanoluciferase gene, and measured infection by luciferase activity in the supernatants over time. We also surveyed opioid receptor expression in PBMC, genital epithelial cells and other leukocytes by qPCR and western blotting. Reactivation from latency was assessed in J-Lat 11.1 and U1 cell lines. Results: we did not detect expression of classical opioid receptors in leukocytes, but did find nociception/orphanin FQ receptor (NOP) expression in blood and vaginal lymphocytes as well as genital epithelial cells. In PBMCs, we found that at physiological doses, morphine, and methadone had a variable or no effect on HIV infection, but buprenorphine treatment significantly increased HIV-1 infectivity (median: 8.797-fold increase with 20 nM buprenorphine, eight experiments, range: 3.570–691.9, p = 0.0078). Using latently infected cell lines, we did not detect reactivation of latent HIV following treatment with any of the opioid drugs. Conclusions: our results suggest that buprenorphine, in contrast to morphine or methadone, increases the in vitro susceptibility of leukocytes to HIV-1 infection but has no effect on in vitro HIV reactivation. These findings contribute to our understanding how opioids, including those used for MAT, affect HIV infection and reactivation, and can help to inform the choice of MAT for people living with HIV or who are at risk of HIV infection.

Blood ◽  
1998 ◽  
Vol 92 (9) ◽  
pp. 3346-3354 ◽  
Author(s):  
Ligia A. Pinto ◽  
Sandra Sharpe ◽  
David I. Cohen ◽  
Gene M. Shearer

Abstract A number of studies have suggested that an immune response to human leukocyte antigen (HLA) alloantigens may contribute to protection against HIV infection. In the present study, we examined the effect of alloantigen-stimulated cell lines obtained from peripheral blood mononuclear cells (PBMC) of HIV-uninfected (HIV−) individuals and the soluble factors produced by these cell lines on HIV-1 replication. Multiple in vitro restimulation with irradiated allogeneic PBMC from HIV− donors resulted in the expansion of CD8+ T-cell lines that inhibited HIV-1 replication when cocultured with either autologous or heterologous in vitro–infected phytohemagglutinin (PHA) blasts. Supernatants from the alloantigen-stimulated cell lines also inhibited HIV replication in both PHA blasts and a chronically infected cell line. The alloantigen-stimulated cell lines and the factors they produced inhibited both T-cell–tropic (T) and macrophage-tropic (M) isolates of HIV-1. Blocking experiments using anti-chemokine antibodies suggested that this inhibition of HIV replication was not due to the β-chemokines present in cocultures of cell lines with HIV-infected blasts. These results indicate that alloantigen-stimulation of PBMC from HIV−individuals activates CD8+ T cells that produce soluble factor(s) that inhibit HIV replication of a wide spectrum of HIV-1 isolates through a chemokine-independent mechanism. This is a US government work. There are no restrictions on its use.


Blood ◽  
1998 ◽  
Vol 92 (9) ◽  
pp. 3346-3354 ◽  
Author(s):  
Ligia A. Pinto ◽  
Sandra Sharpe ◽  
David I. Cohen ◽  
Gene M. Shearer

A number of studies have suggested that an immune response to human leukocyte antigen (HLA) alloantigens may contribute to protection against HIV infection. In the present study, we examined the effect of alloantigen-stimulated cell lines obtained from peripheral blood mononuclear cells (PBMC) of HIV-uninfected (HIV−) individuals and the soluble factors produced by these cell lines on HIV-1 replication. Multiple in vitro restimulation with irradiated allogeneic PBMC from HIV− donors resulted in the expansion of CD8+ T-cell lines that inhibited HIV-1 replication when cocultured with either autologous or heterologous in vitro–infected phytohemagglutinin (PHA) blasts. Supernatants from the alloantigen-stimulated cell lines also inhibited HIV replication in both PHA blasts and a chronically infected cell line. The alloantigen-stimulated cell lines and the factors they produced inhibited both T-cell–tropic (T) and macrophage-tropic (M) isolates of HIV-1. Blocking experiments using anti-chemokine antibodies suggested that this inhibition of HIV replication was not due to the β-chemokines present in cocultures of cell lines with HIV-infected blasts. These results indicate that alloantigen-stimulation of PBMC from HIV−individuals activates CD8+ T cells that produce soluble factor(s) that inhibit HIV replication of a wide spectrum of HIV-1 isolates through a chemokine-independent mechanism. This is a US government work. There are no restrictions on its use.


2016 ◽  
Vol 61 (1) ◽  
Author(s):  
Subhra Mandal ◽  
Michael Belshan ◽  
Ashley Holec ◽  
You Zhou ◽  
Christopher J. Destache

ABSTRACT Among various FDA-approved combination antiretroviral drugs (cARVs), emtricitabine (FTC) has been a very effective nucleoside reverse transcriptase inhibitor. Thus far, FTC is the only deoxycytidine nucleoside analog. However, a major drawback of FTC is its large volume distribution (averaging 1.4 liters/kg) and short plasma half-life (8 to 10 h), necessitating a high daily dosage. Thus, we propose an innovative fabrication method of loading FTC in poly(lactic-co-glycolic acid) polymeric nanoparticles (FTC-NPs), potentially overcoming these drawbacks. Our nanoformulation demonstrated enhanced FTC loading (size of <200 nm and surface charge of −23 mV) and no to low cytotoxicity with improved biocompatibility compared to those with FTC solution. An ex vivo endosomal release assay illustrated that NP entrapment prolongs FTC release over a month. Intracellular retention studies demonstrate sustained FTC retention over time, with approximately 8% (24 h) to 68% (96 h) release with a mean retention of ∼0.74 μg of FTC/105 cells after 4 days. An in vitro HIV-1 inhibition study demonstrated that FTC-NP treatment results in a 50% inhibitory concentration (IC50) ∼43 times lower in TZM-bl cells (0.00043 μg/ml) and ∼3.7 times lower (0.009 μg/ml) in peripheral blood mononuclear cells (PBMCs) than with FTC solution (TZM-bl cells, 0.01861, and PBMCs, 0.033 μg/ml). Further, on primary PBMCs, FTC-NPs also illustrate an HIV-1 infection blocking efficacy comparable to that of FTC solution. All the above-described studies substantiate that FTC nanoformulation prolongs intracellular FTC concentration and inhibition of HIV infection. Therefore, FTC-NPs potentially could be a long-acting, stable formulation to ensure once-biweekly dosing to prevent or treat HIV infection.


2001 ◽  
Vol 75 (11) ◽  
pp. 4999-5008 ◽  
Author(s):  
Lee Bacheler ◽  
Susan Jeffrey ◽  
George Hanna ◽  
Richard D'Aquila ◽  
Lany Wallace ◽  
...  

ABSTRACT Efavirenz (also known as DMP 266 or SUSTIVA) is a potent nonnucleoside inhibitor of human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT) activity and of HIV-1 replication in vitro and in vivo. Most patients on efavirenz-containing regimens have sustained antiviral responses; however, rebounds in plasma viral load have been observed in some patients in association with the emergence of mutant strains of HIV-1. Virus isolates from the peripheral blood mononuclear cells (PBMCs) of patients with such treatment failures, as well as recombinant viruses incorporating viral sequences derived from patient plasma, show reduced in vitro susceptibility to efavirenz in association with mutations in the RT gene encoding K103N, Y188L, or G190S/E substitutions. Patterns of RT gene mutations and in vitro susceptibility were similar in plasma virus and in viruses isolated from PBMCs. Variant strains of HIV-1 constructed by site-directed mutagenesis confirmed the role of K103N, G190S, and Y188L substitutions in reduced susceptibility to efavirenz. Further, certain secondary mutations (V106I, V108I, Y181C, Y188H, P225H, and F227L) conferred little resistance to efavirenz as single mutations but enhanced the level of resistance of viruses carrying these mutations in combination with K103N or Y188L. Viruses with K103N or Y188L mutations, regardless of the initial selecting nonnucleoside RT inhibitor (NNRTI), exhibited cross-resistance to all of the presently available NNRTIs (efavirenz, nevirapine, and delavirdine). Some virus isolates from nevirapine or delavirdine treatment failures that lacked K103N or Y188L mutations remained susceptible to efavirenz in vitro, although the clinical significance of this finding is presently unclear.


2003 ◽  
Vol 228 (6) ◽  
pp. 730-740 ◽  
Author(s):  
J.B. Sundstrom ◽  
D.E. Martinson ◽  
M. Mosunjac ◽  
P. Bostik ◽  
L.K. McMullan ◽  
...  

Recent reports have indicated that norepinephrine (NE) enhances HIV replication in infected monocytes and promotes increased expression of select matrix metalloproteinases associated with dilated cardiomyopathy (DCM) in vitro in co-cultures of HIV-infected leukocytes and human cardiac microvascular endothelial cells (HMVEC-C). The influence of NE on HIV infection and leukocyte-endothelial interactions suggests a pathogenic role in AIDS-related cardiovascular disease. This study examined the effects of norepinephrine (NE) and HIV-1 infection on leukocyte adhesion to HMVEC-C. Both flow and static conditions were examined and the expression of selected adhesion molecules and cytokines were monitored in parallel. NE pretreatment resulted in a detectable, dose-dependent increase of leukocyte-endothelial adhesion (LEA) with both HIV-1-infected and -uninfected peripheral blood mononuclear cells (PBMCs) relative to media controls after 48 hr in co-culture with HMVEC-C in vitro. However, the combination of NE plus HIV infection resulted in a significant ( P < 0.0001) 18-fold increase in LEA over uninfected media controls. Increased levels in both cell-associated and -soluble ICAM-1 and E-Selectin but not VCAM-1 correlated with increased LEA and with HIV-1 infection or NE pretreatment. Blocking antibodies specific for ICAM-1 or E-Selectin inhibited HIV-NE-induced LEA. These data suggest a model in which NE primes HIV-1-infected leukocytes for enhanced adhesion and localization in HMVEC-C where they can initiate and participate in vascular injury associated with AIDS-related cardiomyopathy.


Author(s):  
Alex Olson ◽  
Carolyn Coote ◽  
Jennifer E Snyder-Cappione ◽  
Nina Lin ◽  
Manish Sagar

Abstract Individuals infected with human immunodeficiency virus (HIV) 1 have increased inflammation, which has been associated with age-associated diseases. Plasma markers, cell-associated virus levels, and ability to stimulate RNA transcription in latently infected cell lines was examined in younger and older HIV-1–infected individuals with suppressed virus. Cell-associated RNA, but not intact provirus level, had positive correlation with plasma D-dimer levels. Compared with the younger group, the older group had higher D-dimer levels and a trend toward more cell-associated RNA but similar levels of intact proviruses. Even though all measured inflammatory markers were relatively higher in the older group, this greater inflammation did not induce more HIV-1 transcription in latently infected cell lines. Inflammation and HIV-1 RNA expression increase with age despite similar levels of intact infectious HIV DNA. While plasma inflammation is correlated with HIV-1 RNA expression in peripheral blood mononuclear cells, it does not induce HIV-1 transcription in latently infected cell lines.


1996 ◽  
Vol 40 (5) ◽  
pp. 1072-1077 ◽  
Author(s):  
C G Bridges ◽  
D L Taylor ◽  
P S Ahmed ◽  
T M Brennan ◽  
J M Hornsperger ◽  
...  

The novel acyclonucleotide derivative of guanine, 9-[2-methylidene-3-(phosphonomethoxy)propyl] guanine (MDL 74,968), had antiviral activity comparable to those of 9-(2-phosphonomethoxyethyl) adenine (PMEA) and 2',3'-dideoxyinosine against laboratory strains of both human immunodeficiency virus (HIV) types 1 and 2 cultured in MT-4 cells and several clinical HIV isolates cultured in human peripheral blood mononuclear cells (PBMCs). MDL 74,968 was at least fourfold less toxic than PMEA to MT-4 cells or PBMCs, thereby producing a more favorable in vitro selectivity index for the former compound. Studies of acute toxicity in CD-1 mice showed that MDL 74,968 was not toxic at doses of 1,600 mg/kg of body weight via the intraperitoneal route or at doses of 500 mg/kg via the intravenous route. Furthermore, no adverse effects of MDL 74,968 were apparent when mice were treated at doses of 200 mg/kg twice daily for 5 days. Treatment by continuous subcutaneous infusion of MDL 74,968 or PMEA at the daily dose of 20 mg/kg in the hu-PBL-SCID.beige murine model of HIV infection significantly reduced the severity of infection compared with that in placebo-treated controls. Quantitation of virus recovery by endpoint titration of spleen cells in coculture with mitogen-activated PBMCs demonstrated that MDL 74,968 as well as PMEA significantly reduced the amount of virus (P < 0.02). Moreover, by using DNA extracted from spleens, the mean HIV:HLA PCR product ratio, which takes into account individual variation in immune system reconstitution, were 0.50 and 0.40 for MDL 74,968 and PMEA treatments, respectively, whereas animals receiving the placebo control had significantly higher levels of HIV proviral DNA (mean 0.78; P < 0.02). Taken together, these promising findings suggest that an orally bioavailable prodrug of MDL 74,968 should be developed for the treatment of HIV infection.


Sign in / Sign up

Export Citation Format

Share Document