scholarly journals Mouse Adenovirus Type 1 Infection in SCID Mice: an Experimental Model for Antiviral Therapy of Systemic Adenovirus Infections

2005 ◽  
Vol 49 (11) ◽  
pp. 4689-4699 ◽  
Author(s):  
L. Lenaerts ◽  
E. Verbeken ◽  
E. De Clercq ◽  
L. Naesens

ABSTRACT The importance of human adenovirus infections in immunocompromised patients urges for new and adequate antiadenovirus compounds. Since human adenoviruses are species specific, animal models for systemic adenovirus infections rely on a nonhuman adenovirus. We established mouse adenovirus type 1 (MAV-1) infection of BALB/c SCID mice as a model for the evaluation of antiadenovirus therapy. In vitro studies with mouse embryonic fibroblasts pointed to the acyclic nucleoside phosphonate cidofovir and the N-7-substituted acyclic derivative 2-amino-7-(1,3-dihydroxy-2-propoxymethyl)purine (S-2242) as markedly active compounds against MAV-1. SCID mice, infected intranasally with MAV-1, developed a fatal disseminated infection after approximately 19 days, characterized by hemorrhagic enteritis. Several techniques were optimized to monitor viral, immunological, and pathological aspects of MAV-1 infection. Real-time PCR quantification of viral DNA revealed that after replication in the lungs, virus disseminated to several organs, including the brain, liver, spleen, intestine, heart, and kidneys (resulting in viruria). Immunohistochemical staining showed that MAV-1 was localized in the endothelial cells of the affected organs. Using reverse transcription-PCR, tissue levels of proinflammatory cytokines (i.e., interleukin-1β and tumor necrosis factor alpha) were found to be markedly increased. The MAV-1/SCID model appears to be an appropriate model for in vivo evaluation of antiadenovirus agents. Treatment with cidofovir or S-2242 at a dose of 100 mg per kg of body weight resulted in a significant delay in MAV-1-related death, although these antivirals were unable to completely suppress virus replication despite continued drug treatment. These findings suggest that complete virus clearance during antiviral therapy for disseminated adenovirus infection may require an efficient adaptive immune response from the host.

Viruses ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1483
Author(s):  
Emily A. Bates ◽  
John R. Counsell ◽  
Sophie Alizert ◽  
Alexander T. Baker ◽  
Natalie Suff ◽  
...  

The human adenovirus phylogenetic tree is split across seven species (A–G). Species D adenoviruses offer potential advantages for gene therapy applications, with low rates of pre-existing immunity detected across screened populations. However, many aspects of the basic virology of species D—such as their cellular tropism, receptor usage, and in vivo biodistribution profile—remain unknown. Here, we have characterized human adenovirus type 49 (HAdV-D49)—a relatively understudied species D member. We report that HAdV-D49 does not appear to use a single pathway to gain cell entry, but appears able to interact with various surface molecules for entry. As such, HAdV-D49 can transduce a broad range of cell types in vitro, with variable engagement of blood coagulation FX. Interestingly, when comparing in vivo biodistribution to adenovirus type 5, HAdV-D49 vectors show reduced liver targeting, whilst maintaining transduction of lung and spleen. Overall, this presents HAdV-D49 as a robust viral vector platform for ex vivo manipulation of human cells, and for in vivo applications where the therapeutic goal is to target the lung or gain access to immune cells in the spleen, whilst avoiding liver interactions, such as intravascular vaccine applications.


Author(s):  
Emily A. Bates ◽  
John R. Counsell ◽  
Sophie Alizert ◽  
Alexander T. Baker ◽  
Natalie Suff ◽  
...  

The human adenovirus phylogenetic tree is split across seven species (A-G). Species D adenoviruses offer potential advantages for gene therapy applications, with low rates of preexisting immunity detected across screened populations. However, many aspects of the basic virology of species D, such as their cellular tropism, receptor usage and in vivo biodistribution profile, remain unknown. Here, we have characterized human adenovirus type 49 (HAdV-D49), a relatively understudied species D member. We report that HAdV-D49 does not appear to use a single pathway to gain cell entry but appears able to interact with various surface molecules for entry. As such, HAdV-D49 can transduce a broad range of cell types in vitro, with variable engagement of blood coagulation FX. Interestingly, when comparing in vivo biodistribution to adenovirus type 5, HAdV-D49 vectors show reduced liver targeting whilst maintaining transduction of lung and spleen. Overall, this presents HAdV-D49 as a robust viral vector platform for ex vivo manipulation of human cells and for in vivo applications where the therapeutic goal is to target the lung or gain access to immune cells in the spleen whilst avoiding liver interactions, such as intravascular vaccine applications.


Author(s):  
Emily A. Bates ◽  
John R. Counsell ◽  
Sophie Alizert ◽  
Alexander T. Baker ◽  
Natalie Suff ◽  
...  

The human adenovirus phylogenetic tree is split across seven species (A-G). Species D adenoviruses offer potential advantages for gene therapy applications, with low rates of preexisting immunity detected across screened populations. However, many aspects of the basic virology of species D, such as their cellular tropism, receptor usage and in vivo biodistribution profile, remain unknown. Here, we have characterized human adenovirus type 49 (HAdV-D49), a relatively understudied species D member. We report that HAdV-D49 does not appear to use a single pathway to gain cell entry but appears able to interact with various surface molecules for entry. As such, HAdV-D49 can transduce a broad range of cell types in vitro, with variable engagement of blood coagulation FX. Interestingly, when comparing in vivo biodistribution to adenovirus type 5, HAdV-D49 vectors show reduced liver targeting whilst maintaining transduction of lung and spleen. Overall, this presents HAdV-D49 as a robust viral vector platform for ex vivo manipulation of human cells and for in vivo applications where the therapeutic goal is to target the lung or gain access to immune cells in the spleen whilst avoiding liver interactions, such as intravascular vaccine applications.


2020 ◽  
Author(s):  
ibrahim aljammaz ◽  
Basem Al-Otaibi ◽  
Yousif Al-Malki ◽  
Abdel Abousekhrah ◽  
S. M. Okarvi

Abstract Background: There is a need to develop new and more potent radiofluorinated peptide and their hybrid conjugates for multiple-receptors targeting properties that overexpress on many cancers. Methods: We have synthesized MUC1-[18F]SFB and MUC1-FA-[18F]SFB hybrid conjugates using a convenient and one-step nucleophilic displacement reactions. In vitro cell binding and in vivo evaluation in animals were performed to determine the potential of these radiolabeled compounds. Results: Radiochemical yields for MUC1-[18F]SFB and MUC1-FA-[18F]SFB conjugates were greater than 70% in less than 30 min synthesis time. Radiochemical purities were greater than 97% without HPLC purification, which make these approaches amenable for automation. In vitro studies on MCF7 breast cancer cells showed that the significant amounts of the radiofluorinated conjugates were associated with cell fractions and held good affinity and specificity for MCF7 cells. In vivo characterization in Balb/c mice revealed rapid blood clearance with excretion predominantly by urinary as well as hepatobiliary systems for MUC1-[18F]SFB and MUC1-FA-[18F]SFB, respectively. Biodistribution in SCID mice bearing MCF7 xenografts, demonstrated excellent tumor uptake (12% ID/g) and favorable kinetics for MUC1-FA-[18F]SFB over MUC1-[18F]SFB. The tumor uptake was blocked by the excess co-injection of cold peptides suggesting the receptor-mediated process. Conclusion: Initial PET/CT imaging of SCID mice with MCF7 xenografts, confirmed these observations. These results demonstrate that MUC1-FA-[18F]SFB may be useful PET imaging probe for breast cancer detection and monitoring tumor response to the treatment.


2005 ◽  
Vol 79 (8) ◽  
pp. 5090-5104 ◽  
Author(s):  
Daniel Stone ◽  
Shaoheng Ni ◽  
Zong-Yi Li ◽  
Anuj Gaggar ◽  
Nelson DiPaolo ◽  
...  

ABSTRACT Adenovirus vectors based on human serotype 5 (Ad5) have successfully been used as gene transfer vectors in many gene therapy-based approaches to treat disease. Despite their widespread application, many potential therapeutic applications are limited by the widespread prevalence of vector-neutralizing antibodies within the human population and the inability of Ad5-based vectors to transduce important therapeutic target cell types. In an attempt to circumvent these problems, we have developed Ad vectors based on human Ad serotype 11 (Ad11), since the prevalence of neutralizing antibodies to Ad11 in humans is low. E1-deleted Ad11 vector genomes were generated by homologous recombination in 293 cells expressing the Ad11-E1B55K protein or by recombination in Escherichia coli. E1-deleted Ad11 genomes did not display transforming activity in rodent cells. Transduction of primary human CD34+ hematopoietic progenitor cells and immature dendritic cells was more efficient with Ad11 vectors than with Ad5 vectors. Thirty minutes after intravenous injection into mice that express one of the Ad11 receptors (CD46), we found, in a pattern and at a level comparable to what is found in humans, Ad11 vector genomes in all analyzed organs, with the highest amounts in liver, lung, kidney, and spleen. Neither Ad11 genomes nor Ad11 vector-mediated transgene expression were, however, detected at 72 h postinfusion. A large number of Ad11 particles were also found to be associated with circulating blood cells. We also discovered differences in in vitro transduction efficiencies and in vivo biodistributions between Ad11 vectors and chimeric Ad5 vectors possessing Ad11 fibers, indicating that Ad11 capsid proteins other than fibers influence viral infectivity and tropism. Overall, our study provides a basis for the application of Ad11 vectors for in vitro and in vivo gene transfer and for gaining an understanding of the factors that determine Ad tropism.


2004 ◽  
Vol 72 (5) ◽  
pp. 2477-2483 ◽  
Author(s):  
Naoko Aoki ◽  
Anna Zganiacz ◽  
Peter Margetts ◽  
Zhou Xing

ABSTRACT DAP12 and its associating molecules MDL-1, TREM-1, and TREM-2 are the recently identified immune regulatory molecules, expressed primarily on myeloid cells including monocytes/macrophages, dendritic cells, NK cells, and neutrophils. However, little is known about the regulation of their expression during host antimicrobial responses. We have investigated the effect of pulmonary mycobacterial infection and type 1 cytokines on the expression of these molecules both in vivo and in vitro. While DAP12 was constitutively expressed at high levels in the lungs, the MDL-1, TREM-1, and TREM-2 molecules were inducible during mycobacterial infection. Their kinetic expression was correlated with that of the type 1 cytokines tumor necrosis factor alpha (TNF-α) and gamma interferon (IFN-γ). In primary lung macrophage cultures, high constitutive levels of DAP12 and TREM-2 were not modulated by mycobacterial or type 1 cytokine exposure. In contrast, expression of both MDL-1 and TREM-1 was markedly induced by mycobacterial infection and such induction was inhibited by concurrent exposure to IFN-γ. On mycobacterial infection of TNF-α−/− and IFN-γ−/− mice in vivo or their lung macrophages in vitro, TNF-α was found to be critical for mycobacterially induced MDL-1, but not TREM-1, expression whereas IFN-γ negatively regulated mycobacterially induced MDL-1 and TREM-1 expression. Our findings thus suggest that DAP12 and its associating molecules are differentially regulated by mycobacterial infection and type 1 cytokines and that MDL-1- and TREM-1-triggered DAP12 signaling may play an important role in antimicrobial type 1 immunity.


2020 ◽  
Author(s):  
ibrahim aljammaz ◽  
B. Al-Otaibi ◽  
Y. Al-Malki ◽  
A. Abousekhrah ◽  
S. M. Okarvi

Abstract Background: There is a need to develop new and more potent radiofluorinated peptide and their hybrid conjugates for multiple-receptors targeting properties that overexpress on many cancers.Methods: We have synthesized MUC1-[18F]SFB and MUC1-FA-[18F]SFB hybrid conjugates using a convenient and one-step nucleophilic displacement reactions. In vitro cell binding and in vivo evaluation in animals were performed to determine the potential of these radiolabeled compounds.Results: Radiochemical yields for MUC1-[18F]SFB and MUC1-FA-[18F]SFB conjugates were greater than 70% in less than 30 min synthesis time. Radiochemical purities were greater than 97% without HPLC purification, which makes these approaches amenable for automation. In vitro studies on MCF7 breast cancer cells showed that the significant amounts of the radiofluorinated conjugates were associated with cell fractions and held good affinity and specificity for MCF7 cells. In vivo characterization in Balb/c mice revealed rapid blood clearance with excretion predominantly by urinary as well as hepatobiliary systems for MUC1-[18F]SFB and MUC1-FA-[18F]SFB, respectively.Biodistribution in SCID mice bearing MCF7 xenografts, demonstrated excellent tumor uptake (12% ID/g) and favorable kinetics for MUC1-FA-[18F]SFB over MUC1-[18F]SFB. The tumor uptake was blocked by the excess co-injection of cold peptides suggesting the receptor-mediated process.Conclusion: Initial PET/CT imaging of SCID mice with MCF7 xenografts, confirmed these observations. These results demonstrate that MUC1-FA-[18F]SFB may be a useful PET imaging probe for breast cancer detection and monitoring tumor response to the treatment.


2014 ◽  
Vol 89 (5) ◽  
pp. 2884-2891 ◽  
Author(s):  
Karsten Eichholz ◽  
Franck J. D. Mennechet ◽  
Eric J. Kremer

ABSTRACTOne of the first lines of host defense against many viruses in vertebrates is the innate immune system, which detects pathogen-associated molecular patterns (PAMPs) using pathogen recognition receptors (PRR). The dynamic interactions between pathogens and hosts create, in some cases, species-specific relationships. Recently, it was shown that murine factor X (mFX)-armored human adenovirus (HAd) stimulated a mFX-Toll-like receptor 4 (TLR4)-associated response in mouse macrophagesin vitroandin vivo. Given the importance of studies using animals to better understand host-pathogen interactions, we asked if human FX (hFX)-armored HAd type 5 (HAd5) was capable of activating innate immune sensors in primary human mononuclear phagocytes. To this end, we assayed human mononuclear phagocytes for their ability to be stimulated by hFX-armored HAd5 via a TLR/NF-κB pathway, in particular, a TLR4 pathway. In our hands, we found no significant interaction, activation, or maturation of human mononuclear phagocytes caused by the presence of hFX-armored HAd5.IMPORTANCEAnimals, and mice in particular, are often used as informative and powerful surrogates for how pathogens interact with natural host systems. When possible, extended and targeted studies in the natural host can then be performed. Our data will help us understand the differences in preclinical testing in mice and clinical use in humans in order to improve treatment for HAd diseases and Ad vector effectiveness.


Author(s):  
Xiaojing Wen ◽  
Li Zhang ◽  
Shan Zhao ◽  
Qiang Liu ◽  
Wenyi Guan ◽  
...  

Human adenovirus infections can develop into diffuse multi-organ diseases in young children and immunocompromised patients, and severe cases can lead to death. However, there are no approved antiviral drugs available to treat adenovirus diseases. In this study, a chemiluminescence-based, high-throughput screening (HTS) assay was developed and applied to screen human adenovirus 5(HAdV5)inhibitors from 1,813 approved drug library and 556 traditional Chinese medicine-sourced small-molecule compounds. We identified three compounds with in vitro anti-HAdV5 activities in the low-micromolar range (EC50 values 0.3-4.5 μM, selectivity index values 20-300) that also showed inhibitory effects on HAdV3. Cardamomin (CDM) had good anti-HAdV5 activity in vitro. Furthermore, three dilutions of CDM (150, 75, and 37.5 mg/kg/d) administered to BALB/c mouse models inhibited HAdV5-fluc infection at 1 day post-infection by 80% (p < 0.05), 76% (p < 0.05), and 58% (p < 0.05), respectively. HE-staining of pathological tissue sections of mice infected with a wildtype adenoviral strain showed that CDM had a protective effect on tissues, especially in the liver, and greatly inhibited virus-induced necrosis of liver tissue. Thus, CDM inhibits adenovirus replication in vivo and in vitro. This study established a high-throughput screening method for anti-HAdV5 drugs and demonstrated CDM to be a candidate for HAdV5 therapy, potentially providing a new treatment for patients infected with adenoviruses.


Blood ◽  
2002 ◽  
Vol 99 (4) ◽  
pp. 1267-1272 ◽  
Author(s):  
Renée Bazin ◽  
Éric Aubin ◽  
Lucie Boyer ◽  
Isabelle St-Amour ◽  
Chantal Roberge ◽  
...  

The prophylaxis of the hemolytic disease of the newborn requires significant amounts of plasma-derived polyclonal human anti-D. Because of procurement problems, there is a growing interest in replacing plasma-derived anti-D by in vitro–produced human monoclonal anti-D. Hundreds of monoclonal anti-D have been prepared, but the selection of the most potent for in vivo use is difficult because it cannot be predicted by in vitro characterization. This study evaluated the possibility of using nonobese diabetic/severe combined immunodeficient (NOD-scid) mice for the in vivo evaluation of human monoclonal anti-D. Human red blood cells (RBCs) were found to circulate normally in the blood of NOD-scid mice previously injected with a physiologic amount of human immunoglobulin G (10 mg). The addition of a small amount of anti-D (1 to 5 μg) resulted in the clearance of Rh D+RBCs within 4 hours. The comparative testing of 8 monoclonal anti-Ds showed a wide range of potency (15% to 87%) relative to plasma-derived polyclonal anti-D. There was no strong correlation between the in vivo potency index and the immunoglobulin G isotype, affinity, or fine specificity of the antibodies. These results show the usefulness of NOD-scid mice for the initial in vivo screening of human monoclonal anti-D before testing the most active antibodies in clinical trials done in human volunteers.


Sign in / Sign up

Export Citation Format

Share Document