scholarly journals Function Is More Reliable than Quantity to Follow Up the Humoral Response to the Receptor-Binding Domain of SARS-CoV-2-Spike Protein after Natural Infection or COVID-19 Vaccination

Viruses ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1972
Author(s):  
Carlos A. Sariol ◽  
Petraleigh Pantoja ◽  
Crisanta Serrano-Collazo ◽  
Tiffany Rosa-Arocho ◽  
Albersy Armina-Rodríguez ◽  
...  

Both the SARS-CoV-2 pandemic and emergence of variants of concern have highlighted the need for functional antibody assays to monitor the humoral response over time. Antibodies directed against the spike (S) protein of SARS-CoV-2 are an important component of the neutralizing antibody response. In this work, we report that in a subset of patients—despite a decline in total S-specific antibodies—neutralizing antibody titers remain at a similar level for an average of 98 days in longitudinal sampling of a cohort of 59 Hispanic/Latino patients exposed to SARS-CoV-2. Our data suggest that 100% of seroconverting patients make detectable neutralizing antibody responses which can be quantified by a surrogate viral neutralization test. Examination of sera from ten out of the 59 subjects which received mRNA-based vaccination revealed that both IgG titers and neutralizing activity of sera were higher after vaccination compared to a cohort of 21 SARS-CoV-2 naïve subjects. One dose was sufficient for the induction of a neutralizing antibody, but two doses were necessary to reach 100% surrogate virus neutralization in subjects irrespective of previous SARS-CoV-2 natural infection status. Like the pattern observed after natural infection, the total anti-S antibodies titers declined after the second vaccine dose; however, neutralizing activity remained relatively constant for more than 80 days after the first vaccine dose. Furthermore, our data indicates that—compared with mRNA vaccination—natural infection induces a more robust humoral immune response in unexposed subjects. This work is an important contribution to understanding the natural immune response to the novel coronavirus in a population severely impacted by SARS-CoV-2. Furthermore, by comparing the dynamics of the immune response after the natural infection vs. the vaccination, these findings suggest that functional neutralizing antibody tests are more relevant indicators than the presence or absence of binding antibodies.

2021 ◽  
Author(s):  
Carlos A Sariol ◽  
Petraleigh Pantoja ◽  
Crisanta Serrano-Collazo ◽  
Tiffant Rosa-Arocho ◽  
Albersy Armina ◽  
...  

On this work we report that despite of a decline in the total anti-Spike antibodies the neutralizing antibodies remains at a similar level for an average of 98 days in a longitudinal cohort of 59 Hispanic/Latino exposed to SARS-CoV-2. We are also reporting that the percentage of neutralization correlates with the IgG titers and that in the first collected samples, IgG1 was the predominant isotype (62.71%), followed by IgG4 (15.25%), IgG3 (13.56%), and IgG2 (8.47%) during the tested period. The IgA was detectable in 28.81% of subjects. Only 62.71% of all subjects have detectable IgM in the first sample despite of confirmed infection by a molecular method. Our data suggests that 100% that seroconvert make detectable neutralizing antibody responses measured by a surrogate viral neutralization test. We also found that the IgG titers and neutralizing activity were higher after the first dose in 10 vaccinated subjects out of the 59 with prior infection compare to a subgroup of 21 subjects naive to SARS-CoV-2. One dose was enough but two were necessary to reach the maximum percentage of neutralization in subjects with previous natural infection or naive to SARS-CoV-2 respectively. Like the pattern seen after the natural infection, after the second vaccine dose, the total anti-S antibodies and titers declined but not the neutralizing activity which remains at same levels for more than 80 days after the first vaccine dose. That decline, however, was significantly lower in pre-exposed individuals which denotes the contribution of the natural infection priming a more robust immune response to the vaccine. Also, our data indicates that the natural infection induces a more robust humoral immune response than the first vaccine dose in unexposed subjects. However, the difference was significant only when the neutralization was measured but not by assessing the total anti-S antibodies or the IgG titers. This work is an important contribution to understand the natural immune response to the novel coronavirus in a population severely hit by the virus. Also provide an invaluable data by comparing the dynamic of the immune response after the natural infection vs. the vaccination and suggesting that a functional test is a better marker than the presence or not of antibodies. On this context our results are also highly relevant to consider standardizing methods that in addition to serve as a tool to follow up the immune response to the vaccines may also provide a correlate of protection.


Vaccines ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 1499
Author(s):  
Mariapia Guerrieri ◽  
Beatrice Francavilla ◽  
Denise Fiorelli ◽  
Marzia Nuccetelli ◽  
Francesco Maria Passali ◽  
...  

SARS-CoV-2 antibody assays are crucial in managing the COVID-19 pandemic. Approved mRNA COVID-19 vaccines are well known to induce a serum antibody responses against the spike protein and its RBD. Mucosal immunity plays a major role in the fight against COVID-19 directly at the site of virus entry; however, vaccine abilities to elicit mucosal immune responses have not been reported. We detected anti-SARS-CoV-2 IgA-S1 and IgG-RBD in three study populations (healthy controls, vaccinated subjects, and subjects recovered from COVID-19 infection) on serum, saliva, and nasal secretions using two commercial immunoassays (ELISA for IgA-S1 and chemiluminescent assay for IgG-RBD). Our results show that the mRNA BNT162b2 vaccine Comirnaty (Pfizer/BioNTech, New York, NY, USA) determines the production of nasal and salivary IgA-S1 and IgG-RBD against SARS-CoV-2. This mucosal humoral immune response is stronger after the injection of the second vaccine dose compared to subjects recovered from COVID-19. Since there is a lack of validated assays on saliva and nasal secretions, this study shows that our pre-analytical and analytical procedures are consistent with the data. Our findings indicate that the mRNA COVID-19 vaccine elicits antigen-specific nasal and salivary immune responses, and that mucosal antibody assays could be used as candidates for non-invasive monitoring of vaccine-induced protection against viral infection.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 2573-2573
Author(s):  
Giovanni Caocci ◽  
Olga Mulas ◽  
Daniela Mantovani ◽  
Alessandro Costa ◽  
Andrea Galizia ◽  
...  

Abstract Introduction. Patients with Myelofibrosis (MF) are considered fragile and thus eligible in Italy for COVID-19 BNT162b2 mRNA vaccination. According to the International Prognostic Scoring System (IPSS), patients with intermediate and high MF, may receive clinical benefits from ruxolitinib, the first approved JAK1/JAK2 inhibitor. Given the potent anti-inflammatory properties of ruxolitinib against immunocompetent cells, we previously reported a lower but non-statistically absolute IgG anti-Spike humoral response in vaccinated MF patients treated with ruxolitinib. In the present report we extended the cohort of MF patients. Methods. All MF patients received 2 injections of 30 ug per dose of BNT162b2 mRNA COVID-19 vaccine 3 weeks apart, according to the standard protocol. After injection, mild pain at the injection site was frequently reported. No serious adverse events were registered. The serum level of IgG anti-Spike glycoprotein was tested after a median time of 45 days (range 40-60) from the second vaccine dose, using the approved anti-SARS-CoV-2 IgG CLIA (LIAISON® SARS-CoV-2 TrimericS IgG assay, Diasorin, Saluggia, Italy). An Arbitrary Units per milliliter (AU/mL) ratio of <12.0 was considered to be negative, 12.0-15.0 AU/mL to be borderline and >15 AU/mL to be positive. A conversion of AU/mL to binding antibody units (BAU/mL) as recommended by the World Health Organization (WHO) guidelines was achieved considering the following equation: BAU/mL = 2.6*AU/mL. Results. Overall, 30 MF patients (median age 65 years, range 48-83) were vaccinated. A diagnosis of primary MF was reported in 21 cases (70%), post essential thrombocythemia-MF in 6 (20%) patients and post polycythemia vera-MF in 3 (10%) patients; 23 out of 30 patients (76.6%) were positive for the JAK2V617F, 5 (16.6%) for CALR mutation, 1 (3.3%) for MPL mutation and 1 patient (3.3%) resulted triple negative. Splenomegaly was observed in 14 patients (46%) and 19 (63.3%) reported comorbidities. Nineteen patients (63.3%) were classified as DIPSS low or intermediate-1 risk, and 11 (36.6%) as intermediate-2 or high risk. Fifteen patients (50%) were receiving ruxolitinib, at a median total dose of 20 mg/die (range 20-40 mg) and the remaining 15 patients other treatments (8 patients hydroxyurea and 7 only supportive therapy). None of the patients reported COVID-19 infection neither previous nor subsequently to vaccination. Overall, a positive immune response against COVID-19 was observed in 8 out of 15 patients (53.3%) in the ruxolitinib group, in comparison with 13 out 15 patients (86.6%) in the other treatment group (p=0,046). The absolute IgG anti-Spike value was lower in the ruxolitinib group (median 35.2±49.81) in comparison with the other group (median 226.1±163.9; p=<0.001), Figure 1. In univariate analysis, only ruxolitinib treatment was found associated with a lower humoral immune response to the vaccine. Conclusions. MF patients under ruxolitinib achieved a lower humoral immune response in comparison with MF patients who underwent other treatments. No COVID-19 infection was observed in both groups after vaccination, after a median follow up of 3 months since the second dose. Whether patients with a potential insufficient humoral response to vaccine will benefit from a third dose of BNT162b2 mRNA COVID-19 vaccine is a matter of further investigation. Our preliminary data need to be confirmed in larger cohort of MF patients. Figure 1 Figure 1. Disclosures Murru: Abbvie: Consultancy, Honoraria, Other: travel and accommodation; Janssen: Consultancy, Honoraria.


2021 ◽  
Author(s):  
Elisa Danese ◽  
Martina Montagnana ◽  
Gian Luca Salvagno ◽  
Matteo Gelati ◽  
Denise Peserico ◽  
...  

Background. Since universal vaccination is a pillar against coronavirus disease 2019 (COVID-19), monitoring anti-SARS-CoV-2 neutralizing antibodies is essential for deciphering post-vaccination immune response. Methods. Three healthcare workers received 30 μg BNT162b2 mRNA Covid-19 Vaccine, followed by a second identical dose, 21 days afterwards. Venous blood was drawn at baseline and at serial intervals, up to 63 days afterwards, for assessing total immunoglobulins (Ig) anti-RBD (receptor binding domain), IgG anti-S1/S2, IgG anti-RBD, IgM anti-RBD, IgM anti-N/S1 and IgA anti-S1. Results. All subjects were SARS-CoV-2 seronegative at baseline. Total Ig anti-RBD, IgG anti-S1/S2 and IgG anti-RBD levels increased between 91-368 folds until 21 days after the first vaccine dose, then reached a plateau. The levels raised further after the second dose (by ~30-, ~8- and ~8-fold, respectively), peaking at day 35, but then slightly declining and stabilizing ~50 days after the first dose. IgA anti-S1 levels increased between 7-11 days after the first dose, slightly declined before the second dose, after which levels augmented by ~24-fold from baseline. The anti-RBD and anti-N/S1 IgM kinetics were similar to that of anti-S1 IgA, though displaying substantially weaker increases and modest peaks, only 4 to 7-fold higher than baseline. Highly significant inter-correlation was noted between total Ig anti-RBD, anti-S1/S2 and anti-RBD IgG (all r=0.99), whilst other anti-SARS-CoV-2 antibodies displayed lower, though still significant, correlations. Serum spike protein concentration was undetectable at all time points. Conclusions. BNT162b2 mRNA vaccination generates a robust humoral immune response, especially involving IgG and IgA, magnified by the second vaccine dose.


Viruses ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 786
Author(s):  
Muneerah Smith ◽  
Houari B. Abdesselem ◽  
Michelle Mullins ◽  
Ti-Myen Tan ◽  
Andrew J. M. Nel ◽  
...  

The COVID-19 pandemic has affected all individuals across the globe in some way. Despite large numbers of reported seroprevalence studies, there remains a limited understanding of how the magnitude and epitope utilization of the humoral immune response to SARS-CoV-2 viral anti-gens varies within populations following natural infection. Here, we designed a quantitative, multi-epitope protein microarray comprising various nucleocapsid protein structural motifs, including two structural domains and three intrinsically disordered regions. Quantitative data from the microarray provided complete differentiation between cases and pre-pandemic controls (100% sensitivity and specificity) in a case-control cohort (n = 100). We then assessed the influence of disease severity, age, and ethnicity on the strength and breadth of the humoral response in a multi-ethnic cohort (n = 138). As expected, patients with severe disease showed significantly higher antibody titers and interestingly also had significantly broader epitope coverage. A significant increase in antibody titer and epitope coverage was observed with increasing age, in both mild and severe disease, which is promising for vaccine efficacy in older individuals. Additionally, we observed significant differences in the breadth and strength of the humoral immune response in relation to ethnicity, which may reflect differences in genetic and lifestyle factors. Furthermore, our data enabled localization of the immuno-dominant epitope to the C-terminal structural domain of the viral nucleocapsid protein in two independent cohorts. Overall, we have designed, validated, and tested an advanced serological assay that enables accurate quantitation of the humoral response post natural infection and that has revealed unexpected differences in the magnitude and epitope utilization within a population.


1998 ◽  
Vol 72 (3) ◽  
pp. 2388-2397 ◽  
Author(s):  
Hanne Gahéry-Ségard ◽  
Françoise Farace ◽  
Dominique Godfrin ◽  
Jesintha Gaston ◽  
Renée Lengagne ◽  
...  

ABSTRACT Replication-deficient adenovirus used in humans for gene therapy induces a strong immune response to the vector, resulting in transient recombinant protein expression and the blocking of gene transfer upon a second administration. Therefore, in this study we examined in detail the capsid-specific humoral immune response in sera of patients with lung cancer who had been given one dose of a replication-defective adenovirus. We analyzed the immune response to the three major components of the viral capsid, hexon (Hx), penton base (Pb), and fiber (Fi). A longitudinal study of the humoral response assayed on adenovirus particle-coated enzyme-linked immunosorbent assay plates showed that patients had preexisting immunity to adenovirus prior to the administration of adenovirus–β-gal. The level of the response increased in three patients after adenovirus administration and remained at a maximum after three months. One patient had a strong immune response to adenovirus prior to treatment, and this response was unaffected by adenovirus administration. Sera collected from the patients were assayed for recognition of each individual viral capsid protein to determine more precisely the molecular basis of the humoral immune response. Clear differences existed in the humoral response to the three major components of the viral capsid in serum from humans. Sequential appearance of these antibodies was observed: anti-Fi antibodies appeared first, followed by anti-Pb antibodies and then by anti-Hx antibodies. Moreover, anti-Fi antibodies preferentially recognized the native trimeric form of Fi protein, suggesting that they recognized conformational epitopes. Our results showed that sera with no neutralizing activity contained only anti-Fi antibodies. In contrast, neutralizing activity was only obtained with sera containing anti-Fi and anti-Pb antibodies. More importantly, we showed that anti-native Fi and anti-Pb antibodies had a synergistic effect on neutralization. The application of these conclusions to human gene therapy with recombinant adenovirus should lead to the development of strategies to overcome the formation of such neutralization antibodies, which have been shown to limit the efficacy of gene transfer in humans.


Cell Research ◽  
2021 ◽  
Author(s):  
Yunlong Cao ◽  
Ayijiang Yisimayi ◽  
Yali Bai ◽  
Weijin Huang ◽  
Xiaofeng Li ◽  
...  

AbstractSARS-CoV-2 variants could induce immune escape by mutations on the receptor-binding domain (RBD) and N-terminal domain (NTD). Here we report the humoral immune response to circulating SARS-CoV-2 variants, such as 501Y.V2 (B.1.351), of the plasma and neutralizing antibodies (NAbs) elicited by CoronaVac (inactivated vaccine), ZF2001 (RBD-subunit vaccine) and natural infection. Among 86 potent NAbs identified by high-throughput single-cell VDJ sequencing of peripheral blood mononuclear cells from vaccinees and convalescents, near half anti-RBD NAbs showed major neutralization reductions against the K417N/E484K/N501Y mutation combination, with E484K being the dominant cause. VH3-53/VH3-66 recurrent antibodies respond differently to RBD variants, and K417N compromises the majority of neutralizing activity through reduced polar contacts with complementarity determining regions. In contrast, the 242–244 deletion (242–244Δ) would abolish most neutralization activity of anti-NTD NAbs by interrupting the conformation of NTD antigenic supersite, indicating a much less diversity of anti-NTD NAbs than anti-RBD NAbs. Plasma of convalescents and CoronaVac vaccinees displayed comparable neutralization reductions against pseudo- and authentic 501Y.V2 variants, mainly caused by E484K/N501Y and 242–244Δ, with the effects being additive. Importantly, RBD-subunit vaccinees exhibit markedly higher tolerance to 501Y.V2 than convalescents, since the elicited anti-RBD NAbs display a high diversity and are unaffected by NTD mutations. Moreover, an extended gap between the third and second doses of ZF2001 leads to better neutralizing activity and tolerance to 501Y.V2 than the standard three-dose administration. Together, these results suggest that the deployment of RBD-vaccines, through a third-dose boost, may be ideal for combating SARS-CoV-2 variants when necessary, especially for those carrying mutations that disrupt the NTD supersite.


2021 ◽  
Author(s):  
Jonas Herzberg ◽  
Tanja Vollmer ◽  
Bastian Fischer ◽  
Heiko Becher ◽  
Ann-Kristin Becker ◽  
...  

Background Following a year of development, several vaccines have been approved to contain the global COVID-19 pandemic. Real world comparative data on immune response following vaccination or natural infection are rare. Methods We conducted a longitudinal observational study in employees at a secondary care hospital affected by the COVID-19 pandemic. Comparisons were made about the presence of anti-SARS-CoV-2 immunglobulin G (IgG) antibody ratio after natural infection, or vaccination with one or two doses of BioNTech/Pfizer (BNT162b2), or one dose of AstraZenca (Vaxzevria) vaccine. Results We found a 100% humoral response rate in participants after 2 doses of BNT162b2 vaccine. The antibody ratio in participants with one dose BNT162b2 and Vaxzevria did not differ significantly to those with previous PCR-confirmed infection, whereas this was significantly lower in comparison to two doses of BioNTech/Pfizer. We could not identify a correlation with previous comorbidities, obesity or age within this study. Smoking showed a negative effect on the antibody response (p=0.006) Conclusion Our data provide an overview about humoral immune response after natural SARS-CoV-2 infection or following vaccination, and supports the usage of booster vaccinations, especially in patients after a natural SARS-CoV-2 infection.


Author(s):  
Minjeong Nam ◽  
Jong Do Seo ◽  
Hee-Won Moon ◽  
Hanah Kim ◽  
Mina Hur ◽  
...  

The Siemens severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) IgG (sCOVG; Siemens Healthcare Diagnostics Inc., NY, USA) and Abbott SARS-CoV-2 IgG II Quant (CoV-2 IgG II; Abbott Laboratories, Sligo, Ireland), which are automated, quantitative SARS-CoV-2-binding antibody assays, have been recently launched. This study aimed to evaluate the humoral immune response of BNT162b2 and ChAdOx1 nCoV-19 vaccines using sCOVG and CoV-2 IgG II and compare the quantitative values with the results of the GenScript surrogate virus neutralization test (cPASS; GenScript, USA Inc., NJ, USA).


Author(s):  
Elisa Danese ◽  
Martina Montagnana ◽  
Gian Luca Salvagno ◽  
Denise Peserico ◽  
Laura Pighi ◽  
...  

Abstract Objectives Since universal vaccination is a pillar against coronavirus disease 2019 (COVID-19), monitoring anti-SARS-CoV-2 neutralizing antibodies is essential for deciphering post-vaccination immune response. Methods Three healthcare workers received 30 μg BNT162b2 mRNA Covid-19 Pfizer Vaccine, followed by a second identical dose, 21 days afterwards. Venous blood was drawn at baseline and at serial intervals, up to 63 days afterwards, for assessing total immunoglobulins (Ig) anti-RBD (receptor binding domain), anti-S1/S2 and anti-RBD IgG, anti-RBD and anti-N/S1 IgM, and anti-S1 IgA. Results All subjects were SARS-CoV-2 seronegative at baseline. Total Ig anti-RBD, anti-S1/S2 and anti-RBD IgG levels increased between 91 and 368 folds until 21 days after the first vaccine dose, then reached a plateau. The levels raised further after the second dose (by ∼30-, ∼8- and ∼8-fold, respectively), peaking at day 35, but then slightly declining and stabilizing ∼50 days after the first vaccine dose. Anti-S1 IgA levels increased between 7 and 11 days after the first dose, slightly declined before the second dose, after which levels augmented by ∼24-fold from baseline. The anti-RBD and anti-N/S1 IgM kinetics were similar to that of anti-S1 IgA, though displaying substantially weaker increases and modest peaks, only 4- to 7-fold higher than baseline. Highly significant inter-correlation was noted between total Ig anti-RBD, anti-S1/S2 and anti-RBD IgG (all r=0.99), whilst other anti-SARS-CoV-2 antibodies displayed lower, though still significant, correlations. Serum spike protein concentration was undetectable at all-time points. Conclusions BNT162b2 mRNA vaccination generates a robust humoral immune response, especially involving anti-SARS-Cov-2 IgG and IgA, magnified by the second vaccine dose.


Sign in / Sign up

Export Citation Format

Share Document