scholarly journals Evaluation of Humoral Immune Response after SARS-CoV-2 Vaccination Using Two Binding Antibody Assays and a Neutralizing Antibody Assay

Author(s):  
Minjeong Nam ◽  
Jong Do Seo ◽  
Hee-Won Moon ◽  
Hanah Kim ◽  
Mina Hur ◽  
...  

The Siemens severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) IgG (sCOVG; Siemens Healthcare Diagnostics Inc., NY, USA) and Abbott SARS-CoV-2 IgG II Quant (CoV-2 IgG II; Abbott Laboratories, Sligo, Ireland), which are automated, quantitative SARS-CoV-2-binding antibody assays, have been recently launched. This study aimed to evaluate the humoral immune response of BNT162b2 and ChAdOx1 nCoV-19 vaccines using sCOVG and CoV-2 IgG II and compare the quantitative values with the results of the GenScript surrogate virus neutralization test (cPASS; GenScript, USA Inc., NJ, USA).

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Teresa Aydillo ◽  
Alexander Rombauts ◽  
Daniel Stadlbauer ◽  
Sadaf Aslam ◽  
Gabriela Abelenda-Alonso ◽  
...  

AbstractIn addition to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), humans are also susceptible to six other coronaviruses, for which consecutive exposures to antigenically related and divergent seasonal coronaviruses are frequent. Despite the prevalence of COVID-19 pandemic and ongoing research, the nature of the antibody response against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is unclear. Here we longitudinally profile the early humoral immune response against SARS-CoV-2 in hospitalized coronavirus disease 2019 (COVID-19) patients and quantify levels of pre-existing immunity to OC43, HKU1 and 229E seasonal coronaviruses, and find a strong back-boosting effect to conserved but not variable regions of OC43 and HKU1 betacoronaviruses spike protein. However, such antibody memory boost to human coronaviruses negatively correlates with the induction of IgG and IgM against SARS-CoV-2 spike and nucleocapsid protein. Our findings thus provide evidence of immunological imprinting by previous seasonal coronavirus infections that can potentially modulate the antibody profile to SARS-CoV-2 infection.


2006 ◽  
Vol 193 (6) ◽  
pp. 792-795 ◽  
Author(s):  
Wei Liu ◽  
Arnaud Fontanet ◽  
Pan‐He Zhang ◽  
Lin Zhan ◽  
Zhong‐Tao Xin ◽  
...  

Author(s):  
Suellen Nicholson ◽  
Theo Karapanagiotidis ◽  
Arseniy Khvorov ◽  
Celia Douros ◽  
Francesca Mordant ◽  
...  

Abstract Background Serological testing for SARS-CoV-2 complements nucleic acid tests for patient diagnosis and enables monitoring of population susceptibility to inform the COVID-19 pandemic response. It is important to understand the reliability of assays with different antigen or antibody targets to detect humoral immunity after SARS-CoV-2 infection and to understand how antibody (Ab) binding assays compare to those detecting neutralizing antibody (nAb), particularly as we move into the era of vaccines. Methods We evaluated the performance of six commercially available Enzyme-linked Immunosorbent Assays (ELISAs), including a surrogate virus neutralization test (sVNT), for detection of SARS-CoV-2 immunoglobulins (IgA, IgM, IgG), total or nAb. A result subset was compared to a cell culture-based microneutralisation (MN) assay. We tested sera from patients with prior RT-PCR confirmed SARS-CoV-2 infection, pre-pandemic sera and potential cross-reactive sera from patients with other non-COVID-19 acute infections. Results For sera collected > 14 days post-symptom onset, the assay achieving the highest sensitivity was the Wantai total Ab at 100% (95% confidence interval: 94.6-100) followed by 93.1% for Euroimmun NCP-IgG, 93.1% for GenScript sVNT, 90.3% for Euroimmun S1-IgG, 88.9% for Euroimmun S1-IgA and 83.3% for Wantai IgM. Specificity for the best performing assay was 99.5% for the Wantai total Ab and for the lowest performing assay was 97.1% for sVNT (as per IFU). The Wantai Total Ab had the best agreement with MN at 98% followed by Euroimmun S1-IgA, Euro NCP-IgG and sVNT (as per IFU) with (97%, 97% and 95% respectively) and Wantai IgM having the poorest agreement at 93%. Conclusion Performance characteristics of the SARS-CoV-2 serology assays detecting different antibody types are consistent with those found in previously published reports. Evaluation of the surrogate virus neutralization test in comparison to the Ab binding assays and a cell culture-based neutralization assay showed good result correlation between all assays. However correlation between the cell-based neutralization test and some assays detecting Ab’s not specifically involved in neutralization was higher than with the sVNT. This study demonstrates the reliability of different assays to detect the humoral immune response following SARS-CoV-2 infection, which can be used to optimise serological test algorithms for assessing antibody responses post SARS-CoV-2 infection or vaccination.


1998 ◽  
Vol 31 (4) ◽  
pp. 367-371 ◽  
Author(s):  
Avelino Albas ◽  
Paulo Eduardo Pardo ◽  
Albério Antonio Barros Gomes ◽  
Fernanda Bernardi ◽  
Fumio Honma Ito

Humoral immune response using inactivated rabies vaccine was studied in 35 nelore cross-bred bovines of western region of São Paulo state. Ninety days after vaccination, 13 (92.8%) animals presented titers 30.5IU/ml, through mouse neutralization test. After 180 days, 9 (64.3%) sera showed titers 30.5IU/ml, after 270 days, only one (7.1%) showed a titer of 0.51IU/ml, and after 360 days, all animals showed titers < 0.5IU/ml. Group of animals receiving booster dose 30 days after vaccination presented, two months after, all with titers > 0.5IU/ml. At 180 days, 17 (80.9%) sera presented titers > 0.5IU/ml; at 270 days, 15 (71.4%), with titers 30.5IU/ml and at 360 days, 4 (19.0%), with titers 30.5IU/ml. Booster-dose ensured high levels of neutralizing antibodies for at least three months, and 240 days after revaccination, 71.4% of animals were found with titers 30.5IU/ml.


Author(s):  
Jakob J Malin ◽  
Veronica Di Cristanziano ◽  
Carola Horn ◽  
Elisabeth Pracht ◽  
Jorge Garcia Borrega ◽  
...  

Humoral immunodeficiency is a common finding in patients with B-cell related malignancies such as Non-Hodgkin lymphoma. Failure to induce a sufficient humoral immune response to viral pathogens such as SARS-CoV-2 can result in impaired viral clearance with prolonged viral shedding and symptomatic infections. Here we describe six COVID-19 patients with B-cell Non-Hodgkin lymphoma and impaired humoral immune response that were successfully treated with SARS-CoV-2 neutralizing monoclonal antibodies (nMABs) between June and October 2021. Patients exhibited serological vaccination failure or were unable to clear SARS-CoV-2 even after prolonged infections. Two patients presented with persistent COVID-19 for more than three months. One patient suffered from a third episode of COVID-19 despite vaccination and one patient was diagnosed by SARS-CoV-2 viremia and a positive PCR from the lower respiratory tract while subsequent nasopharyngeal swabs remained negative. In the six described cases, passive immunization with nMABs resulted in rapid and sustained clinical improvement and decrease in viral loads. SARS-CoV-2 nMABs provide a highly attractive treatment option for COVID-19 patients unable to mount a humoral immune response following vaccination or infection.


2021 ◽  
Author(s):  
Hanna Renk ◽  
Alex Dulovic ◽  
Matthias Becker ◽  
Dorit Fabricius ◽  
Maria Zernickel ◽  
...  

Background: Long-term persistence of antibodies against SARS-CoV-2, particularly the SARS-CoV-2 Spike Trimer, determines individual protection against infection and potentially viral spread. The quality of children's natural humoral immune response following SARS-CoV-2 infection is yet incompletely understood but crucial to guide pediatric SARS-CoV-2 vaccination programs. Methods: In this prospective observational multi-center cohort study, we followed 328 households, consisting of 548 children and 717 adults, with at least one member with a previous laboratory-confirmed SARS-CoV-2 infection. The serological response was assessed at 3-4 months and 11-12 months after infection using a bead-based multiplex immunoassay for 23 human coronavirus antigens including SARS-CoV-2 and its Variants of Concern (VOC) and endemic human coronaviruses (HCoVs), and additionally by three commercial SARS-CoV-2 antibody assays. Results: Overall, 33.76% of SARS-CoV-2 exposed children and 57.88% adults were seropositive. Children were five times more likely to have seroconverted without symptoms compared to adults. Despite the frequently asymptomatic course of infection, children had higher specific antibody levels, and their antibodies persisted longer than in adults (96.22% versus 82.89% still seropositive 11-12 months post infection). Of note, symptomatic and asymptomatic infections induced similar humoral responses in all age groups. In symptomatic children, only dysgeusia was found as diagnostic indicator of COVID-19. SARS-CoV-2 infections occurred independent of HCoV serostatus. Antibody binding responses to VOCs were similar in children and adults, with reduced binding for the Beta variant in both groups. Conclusions: The long-term humoral immune response to SARS-CoV-2 infection in children is robust and may provide long-term protection even after asymptomatic infection. (Study ID at German Clinical Trials Register: 00021521)


2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Hanna Renk ◽  
Alex Dulovic ◽  
Alina Seidel ◽  
Matthias Becker ◽  
Dorit Fabricius ◽  
...  

AbstractThe quality and persistence of children’s humoral immune response following SARS-CoV-2 infection remains largely unknown but will be crucial to guide pediatric SARS-CoV-2 vaccination programs. Here, we examine 548 children and 717 adults within 328 households with at least one member with a previous laboratory-confirmed SARS-CoV-2 infection. We assess serological response at 3–4 months and 11–12 months after infection using a bead-based multiplex immunoassay for 23 human coronavirus antigens including SARS-CoV-2 and its Variants of Concern (VOC) and endemic human coronaviruses (HCoVs), and additionally by three commercial SARS-CoV-2 antibody assays. Neutralization against wild type SARS-CoV-2 and the Delta VOC are analysed in a pseudotyped virus assay. Children, compared to adults, are five times more likely to be asymptomatic, and have higher specific antibody levels which persist longer (96.2% versus 82.9% still seropositive 11–12 months post infection). Of note, symptomatic and asymptomatic infections induce similar humoral responses in all age groups. SARS-CoV-2 infection occurs independent of HCoV serostatus. Neutralization responses of children and adults are similar, although neutralization is reduced for both against the Delta VOC. Overall, the long-term humoral immune response to SARS-CoV-2 infection in children is of longer duration than in adults even after asymptomatic infection.


Viruses ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 880 ◽  
Author(s):  
Gökce Nur Cagatay ◽  
Denise Meyer ◽  
Michael Wendt ◽  
Paul Becher ◽  
Alexander Postel

Atypical porcine pestivirus (APPV) is a widely distributed pathogen causing congenital tremor (CT) in piglets. So far, no data are available regarding the humoral immune response against APPV. In this study, piglets and their sows from an affected herd were tested longitudinally for viral genome and antibodies. APPV genome was detected in the majority of the piglets (14/15) from CT affected litters. Transient infection of gilts was observed. Kinetics of Erns- and E2-specific antibodies and their neutralizing capacity were determined by recently (Erns) and newly (E2) developed antibody ELISAs and virus neutralization assays. Putative maternally derived antibodies (MDA) were detected in most piglets, but displayed only low to moderate neutralizing capacity (ND50 ≤ 112). Horizontal APPV transmission occurred when uninfected and infected piglets were mingled on the flat deck. Horizontally infected piglets were clinically inapparent and showed only transient viremia with subsequently consistently high E2 antibody levels. For piglets from CT affected litters, significantly lower neutralizing antibody titers were observed. Results indicate that E2 represents the main target of neutralizing antibodies. Characterization of the humoral immune response against APPV will help to provide valuable serological diagnosis, to understand the epidemiology of this novel pathogen, and to implement tailored prevention strategies.


Author(s):  
Jiaxin Zheng ◽  
Yingying Deng ◽  
Zhenyu Zhao ◽  
Binli Mao ◽  
Mengji Lu ◽  
...  

AbstractCoronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is an ongoing pandemic that poses a great threat to human health worldwide. As the humoral immune response plays essential roles in disease occurrence and development, understanding the dynamics and characteristics of virus-specific humoral immunity in SARS-CoV-2-infected patients is of great importance for controlling this disease. In this review, we summarize the characteristics of the humoral immune response after SARS-CoV-2 infection and further emphasize the potential applications and therapeutic prospects of SARS-CoV-2-specific humoral immunity and the critical role of this immunity in vaccine development. Notably, serological antibody testing based on the humoral immune response can guide public health measures and control strategies; however, it is not recommended for population surveys in areas with very low prevalence. Existing evidence suggests that asymptomatic individuals have a weaker immune response to SARS-CoV-2 infection, whereas SARS-CoV-2-infected children have a more effective humoral immune response than adults. The correlations between antibody (especially neutralizing antibody) titers and protection against SARS-CoV-2 reinfection should be further examined. In addition, the emergence of cross-reactions among different coronavirus antigens in the development of screening technology and the risk of antibody-dependent enhancement related to SARS-CoV-2 vaccination should be given further attention.


Vaccines ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 1499
Author(s):  
Mariapia Guerrieri ◽  
Beatrice Francavilla ◽  
Denise Fiorelli ◽  
Marzia Nuccetelli ◽  
Francesco Maria Passali ◽  
...  

SARS-CoV-2 antibody assays are crucial in managing the COVID-19 pandemic. Approved mRNA COVID-19 vaccines are well known to induce a serum antibody responses against the spike protein and its RBD. Mucosal immunity plays a major role in the fight against COVID-19 directly at the site of virus entry; however, vaccine abilities to elicit mucosal immune responses have not been reported. We detected anti-SARS-CoV-2 IgA-S1 and IgG-RBD in three study populations (healthy controls, vaccinated subjects, and subjects recovered from COVID-19 infection) on serum, saliva, and nasal secretions using two commercial immunoassays (ELISA for IgA-S1 and chemiluminescent assay for IgG-RBD). Our results show that the mRNA BNT162b2 vaccine Comirnaty (Pfizer/BioNTech, New York, NY, USA) determines the production of nasal and salivary IgA-S1 and IgG-RBD against SARS-CoV-2. This mucosal humoral immune response is stronger after the injection of the second vaccine dose compared to subjects recovered from COVID-19. Since there is a lack of validated assays on saliva and nasal secretions, this study shows that our pre-analytical and analytical procedures are consistent with the data. Our findings indicate that the mRNA COVID-19 vaccine elicits antigen-specific nasal and salivary immune responses, and that mucosal antibody assays could be used as candidates for non-invasive monitoring of vaccine-induced protection against viral infection.


Sign in / Sign up

Export Citation Format

Share Document