scholarly journals Parenterally Administered P24-VP8* Nanoparticle Vaccine Conferred Strong Protection against Rotavirus Diarrhea and Virus Shedding in Gnotobiotic Pigs

Vaccines ◽  
2019 ◽  
Vol 7 (4) ◽  
pp. 177 ◽  
Author(s):  
Ramesh ◽  
Mao ◽  
Lei ◽  
Twitchell ◽  
Shiraz ◽  
...  

Current live rotavirus vaccines are costly with increased risk of intussusception due to vaccine replication in the gut of vaccinated children. New vaccines with improved safety and cost-effectiveness are needed. In this study, we assessed the immunogenicity and protective efficacy of a novel P24-VP8* nanoparticle vaccine using the gnotobiotic (Gn) pig model of human rotavirus infection and disease. Three doses of P24-VP8* (200 μg/dose) intramuscular vaccine with Al(OH)3 adjuvant (600 μg) conferred significant protection against infection and diarrhea after challenge with virulent Wa strain rotavirus. This was indicated by the significant reduction in the mean duration of diarrhea, virus shedding in feces, and significantly lower fecal cumulative consistency scores in post-challenge day (PCD) 1–7 among vaccinated pigs compared to the mock immunized controls. The P24-VP8* vaccine was highly immunogenic in Gn pigs. It induced strong VP8*-specific serum IgG and Wa-specific virus-neutralizing antibody responses from post-inoculation day 21 to PCD 7, but did not induce serum or intestinal IgA antibody responses or a strong effector T cell response, which are consistent with the immunization route, the adjuvant used, and the nature of the non-replicating vaccine. The findings are highly translatable and thus will facilitate clinical trials of the P24-VP8* nanoparticle vaccine.

2021 ◽  
Vol 218 (7) ◽  
Author(s):  
Laura Solforosi ◽  
Harmjan Kuipers ◽  
Mandy Jongeneelen ◽  
Sietske K. Rosendahl Huber ◽  
Joan E.M. van der Lubbe ◽  
...  

Safe and effective coronavirus disease–19 (COVID-19) vaccines are urgently needed to control the ongoing pandemic. While single-dose vaccine regimens would provide multiple advantages, two doses may improve the magnitude and durability of immunity and protective efficacy. We assessed one- and two-dose regimens of the Ad26.COV2.S vaccine candidate in adult and aged nonhuman primates (NHPs). A two-dose Ad26.COV2.S regimen induced higher peak binding and neutralizing antibody responses compared with a single dose. In one-dose regimens, neutralizing antibody responses were stable for at least 14 wk, providing an early indication of durability. Ad26.COV2.S induced humoral immunity and T helper cell (Th cell) 1–skewed cellular responses in aged NHPs that were comparable to those in adult animals. Aged Ad26.COV2.S-vaccinated animals challenged 3 mo after dose 1 with a SARS-CoV-2 spike G614 variant showed near complete lower and substantial upper respiratory tract protection for both regimens. Neutralization of variants of concern by NHP sera was reduced for B.1.351 lineages while maintained for the B.1.1.7 lineage independent of Ad26.COV2.S vaccine regimen.


npj Vaccines ◽  
2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Clement A. Meseda ◽  
Charles B. Stauft ◽  
Prabhuanand Selvaraj ◽  
Christopher Z. Lien ◽  
Cyntia Pedro ◽  
...  

AbstractNumerous vaccine candidates against SARS-CoV-2, the causative agent of the COVID-19 pandemic, are under development. The majority of vaccine candidates to date are designed to induce immune responses against the viral spike (S) protein, although different forms of S antigen have been incorporated. To evaluate the yield and immunogenicity of different forms of S, we constructed modified vaccinia virus Ankara (MVA) vectors expressing full-length S (MVA-S), the RBD, and soluble S ectodomain and tested their immunogenicity in dose-ranging studies in mice. All three MVA vectors induced spike-specific immunoglobulin G after one subcutaneous immunization and serum titers were boosted following a second immunization. The MVA-S and MVA-ssM elicited the strongest neutralizing antibody responses. In assessing protective efficacy, MVA-S-immunized adult Syrian hamsters were challenged with SARS-CoV-2 (USA/WA1/2020). MVA-S-vaccinated hamsters exhibited less severe manifestations of atypical pneumocyte hyperplasia, hemorrhage, vasculitis, and especially consolidation, compared to control animals. They also displayed significant reductions in gross pathology scores and weight loss, and a moderate reduction in virus shedding was observed post challenge in nasal washes. There was evidence of reduced viral replication by in situ hybridization, although the reduction in viral RNA levels in lungs and nasal turbinates did not reach significance. Taken together, the data indicate that immunization with two doses of an MVA vector expressing SARS-CoV-2 S provides protection against a stringent SARS-CoV-2 challenge of adult Syrian hamsters, reaffirm the utility of this animal model for evaluating candidate SARS-CoV-2 vaccines, and demonstrate the value of an MVA platform in facilitating vaccine development against SARS-CoV-2.


2021 ◽  
Author(s):  
Makda Gebre ◽  
Susanne Rauch ◽  
Nicole Roth ◽  
Jingyou Yu ◽  
Abishek Chandrashekar ◽  
...  

The CVnCoV (CureVac) mRNA vaccine for SARS-CoV-2 has recently been evaluated in a phase 2b/3 efficacy trial in humans. CV2CoV is a second-generation mRNA vaccine with optimized non-coding regions and enhanced antigen expression. Here we report a head-to-head study of the immunogenicity and protective efficacy of CVnCoV and CV2CoV in nonhuman primates. We immunized 18 cynomolgus macaques with two doses of 12 ug of lipid nanoparticle formulated CVnCoV, CV2CoV, or sham (N=6/group). CV2CoV induced substantially higher binding and neutralizing antibodies, memory B cell responses, and T cell responses as compared with CVnCoV. CV2CoV also induced more potent neutralizing antibody responses against SARS-CoV-2 variants, including B.1.351 (beta), B.1.617.2 (delta), and C.37 (lambda). While CVnCoV provided partial protection against SARS-CoV-2 challenge, CV2CoV afforded robust protection with markedly lower viral loads in the upper and lower respiratory tract. Antibody responses correlated with protective efficacy. These data demonstrate that optimization of non-coding regions can greatly improve the immunogenicity and protective efficacy of an mRNA SARS-CoV-2 vaccine in nonhuman primates.


Author(s):  
Ami Patel ◽  
Jewell Walters ◽  
Emma L. Reuschel ◽  
Katherine Schultheis ◽  
Elizabeth Parzych ◽  
...  

SummaryCoronavirus disease 2019 (COVID-19), caused by the SARS-CoV-2 virus, has had a dramatic global impact on public health, social, and economic infrastructures. Here, we assess immunogenicity and anamnestic protective efficacy in rhesus macaques of the intradermal (ID)-delivered SARS-CoV-2 spike DNA vaccine, INO-4800. INO-4800 is an ID-delivered DNA vaccine currently being evaluated in clinical trials. Vaccination with INO-4800 induced T cell responses and neutralizing antibody responses against both the D614 and G614 SARS-CoV-2 spike proteins. Several months after vaccination, animals were challenged with SARS-CoV-2 resulting in rapid recall of anti-SARS-CoV-2 spike protein T and B cell responses. These responses were associated with lower viral loads in the lung and with faster nasal clearance of virus. These studies support the immune impact of INO-4800 for inducing both humoral and cellular arms of the adaptive immune system which are likely important for providing durable protection against COVID-19 disease.


1999 ◽  
Vol 73 (6) ◽  
pp. 4813-4822 ◽  
Author(s):  
Sue E. Crawford ◽  
Mary K. Estes ◽  
Max Ciarlet ◽  
Christopher Barone ◽  
Christine M. O’Neal ◽  
...  

ABSTRACT The recognition that rotaviruses are the major cause of life-threatening diarrheal disease and significant morbidity in young children has focused efforts on disease prevention and control of these viruses. Although the correlates of protection in children remain unclear, some studies indicate that serotype-specific antibody is important. Based on this premise, current live attenuated reassortant rotavirus vaccines include the four predominant serotypes of virus. We are evaluating subunit rotavirus vaccines, 2/6/7-VLPs and 2/4/6/7-VLPs, that contain only a single VP7 of serotype G1 or G3. In mice immunized parenterally twice, G3 virus-like particles (VLPs) induced a homotypic, whereas G1 VLPs induced a homotypic and heterotypic (G3) serum neutralizing immune response. Administration of three doses of G1 or G3 VLPs induced serum antibodies that neutralized five of seven different serotype test viruses. The inclusion of VP4 in the VLPs was not essential for the induction of heterotypic neutralizing antibody in mice. To confirm these results in another species, rabbits were immunized parenterally with two doses of 2/4/6/7-VLPs containing a G3 or G1 VP7, sequentially with G3 VLPs followed by G1 (G3/G1) VLPs, or with live or psoralen-inactivated SA11. High-titer homotypic serum neutralizing antibody was induced in all rabbits, and low-level heterotypic neutralizing antibody was induced in a subset of rabbits. The rabbits immunized with the G1 or G3/G1 VLPs in QS-21 were challenged orally with live G3 ALA rotavirus. Protection levels were similar in rabbits immunized with homotypic G3 2/4/6/7-VLPs, heterotypic G1 2/4/6/7-VLPs, or G3/G1 2/4/6/7-VLPs. Therefore, G1 2/4/6/7-VLPs can induce protective immunity against a live heterotypic rotavirus challenge in an adjuvant with potential use in humans. Following challenge, broad serum heterotypic neutralizing antibody responses were detected in rabbits parenterally immunized with G1, G3/G1, or G3 VLPs but not with SA11. Immunization with VLPs may provide sufficient priming of the immune system to induce protective anamnestic heterotypic neutralizing antibody responses upon subsequent rotavirus infection. Therefore, a limited number of serotypes of VLPs may be sufficient to provide a broadly protective subunit vaccine.


2020 ◽  
Author(s):  
Laura Solforosi ◽  
Harmjan Kuipers ◽  
Sietske K. Rosendahl Huber ◽  
Joan E.M. van der Lubbe ◽  
Liesbeth Dekking ◽  
...  

AbstractSafe and effective coronavirus disease (COVID)-19 vaccines are urgently needed to control the ongoing pandemic. While single-dose vaccine regimens would provide multiple advantages, two doses may improve the magnitude and durability of immunity and protective efficacy. We assessed one- and two-dose regimens of the Ad26.COV2.S vaccine candidate in adult and aged non-human primates (NHP). A two-dose Ad26.COV2.S regimen induced higher peak binding and neutralizing antibody responses compared to a single dose. In one-dose regimens neutralizing antibody responses were stable for at least 14 weeks, providing an early indication of durability. Ad26.COV2.S induced humoral immunity and Th1 skewed cellular responses in aged NHP that were comparable to adult animals. Importantly, aged Ad26.COV2.S-vaccinated animals challenged 3 months post -dose 1 with a SARS-CoV-2 spike G614 variant showed near complete lower and substantial upper respiratory tract protection for both regimens. These are the first NHP data showing COVID-19 vaccine protection against the SARS-CoV-2 spike G614 variant and support ongoing clinical Ad26.COV2.S development.SummaryCOVID-19 vaccines are urgently needed and while single-dose vaccines are preferred, two-dose regimens may improve efficacy. We show improved Ad26.COV2.S immunogenicity in non-human primates after a second vaccine dose, while both regimens protected aged animals against SARS-CoV-2 disease.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Stefania Dispinseri ◽  
Massimiliano Secchi ◽  
Maria Franca Pirillo ◽  
Monica Tolazzi ◽  
Martina Borghi ◽  
...  

AbstractUnderstanding how antibody responses to SARS-CoV-2 evolve during infection may provide important insight into therapeutic approaches and vaccination for COVID-19. Here we profile the antibody responses of 162 COVID-19 symptomatic patients in the COVID-BioB cohort followed longitudinally for up to eight months from symptom onset to find SARS-CoV-2 neutralization, as well as antibodies either recognizing SARS-CoV-2 spike antigens and nucleoprotein, or specific for S2 antigen of seasonal beta-coronaviruses and hemagglutinin of the H1N1 flu virus. The presence of neutralizing antibodies within the first weeks from symptoms onset correlates with time to a negative swab result (p = 0.002), while the lack of neutralizing capacity correlates with an increased risk of a fatal outcome (p = 0.008). Neutralizing antibody titers progressively drop after 5–8 weeks but are still detectable up to 8 months in the majority of recovered patients regardless of age or co-morbidities, with IgG to spike antigens providing the best correlate of neutralization. Antibody responses to seasonal coronaviruses are temporarily boosted, and parallel those to SARS-CoV-2 without dampening the specific response or worsening disease progression. Our results thus suggest compromised immune responses to the SARS-CoV-2 spike to be a major trait of COVID-19 patients with critical conditions, and thereby inform on the planning of COVID-19 patient care and therapy prioritization.


2011 ◽  
Vol 18 (5) ◽  
pp. 707-716 ◽  
Author(s):  
Lesley C. Dupuy ◽  
Michelle J. Richards ◽  
Barry Ellefsen ◽  
Lillian Chau ◽  
Alain Luxembourg ◽  
...  

ABSTRACTWe evaluated the immunogenicity and protective efficacy of a DNA vaccine expressing codon-optimized envelope glycoprotein genes of Venezuelan equine encephalitis virus (VEEV) when delivered by intramuscular electroporation. Mice vaccinated with the DNA vaccine developed robust VEEV-neutralizing antibody responses that were comparable to those observed after administration of the live-attenuated VEEV vaccine TC-83 and were completely protected from a lethal aerosol VEEV challenge. The DNA vaccine also elicited strong neutralizing antibody responses in rabbits that persisted at high levels for at least 6 months and could be boosted by a single additional electroporation administration of the DNA performed approximately 6 months after the initial vaccinations. Cynomolgus macaques that received the vaccine by intramuscular electroporation developed substantial neutralizing antibody responses and after an aerosol challenge had no detectable serum viremia and had reduced febrile reactions, lymphopenia, and clinical signs of disease compared to those of negative-control macaques. Taken together, our results demonstrate that this DNA vaccine provides a potent means of protecting against VEEV infections and represents an attractive candidate for further development.


2004 ◽  
Vol 11 (1) ◽  
pp. 12-20 ◽  
Author(s):  
Marli S. P. Azevedo ◽  
Lijuan Yuan ◽  
Cristiana Iosef ◽  
Kyeong-Ok Chang ◽  
Yunjeong Kim ◽  
...  

ABSTRACT A sequential mucosal prime-boost vaccine regimen of oral attenuated (Att) human rotavirus (HRV) priming followed by intranasal (i.n.) boosting with rotavirus protein VP2 and VP6 rotavirus-like particles (2/6-VLPs) has previously been shown to be effective for induction of intestinal antibody-secreting cell (ASC) responses and protection in gnotobiotic pigs. Because serum or fecal antibody titers, but not intestinal ASC responses, can be used as potential markers of protective immunity in clinical vaccine trials, we determined the serum and intestinal antibody responses to this prime-boost rotavirus vaccine regimen and the correlations with protection. Gnotobiotic pigs were vaccinated with one of the two sequential vaccines: AttHRV orally preceding 2/6-VLP (VLP2x) vaccination (AttHRV/VLP2x) or following VLP2x vaccination (VLP2x/AttHRV) given i.n. with a mutant Escherichia coli heat-labile toxin (mLT) as adjuvant. These vaccines were also compared with three i.n. doses of VLP+mLT (VLP3x) and one and three oral doses of AttHRV (AttHRV1x and AttHRV3x, respectively). Before challenge all pigs in the AttHRV/VLP2x group seroconverted to positivity for serum immunoglobulin A (IgA) antibodies. The pigs in this group also had significantly higher (P < 0.05) intestinal IgA antibody titers pre- and postchallenge and IgG antibody titers postchallenge compared to those in the other groups. Statistical analyses of the correlations between serum IgM, IgA, IgG, and virus-neutralizing antibody titers and protection demonstrated that each of these was an indicator of protective immunity induced by the AttHRV3x and the AttHRV/VLP2x regimens. However, only IgA and not IgM or IgG antibody titers in serum were highly correlated (R 2 = 0.89; P < 0.001) with the corresponding isotype antibody (IgA) titers in the intestines among all the vaccinated groups, indicating that the IgA antibody titer is probably the most reliable indicator of protection.


Sign in / Sign up

Export Citation Format

Share Document