scholarly journals Evolution and Epidemic Spread of SARS-CoV-2 in Colombia: A Year into the Pandemic

Vaccines ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 837
Author(s):  
Sergio Castañeda ◽  
Luz H. Patiño ◽  
Marina Muñoz ◽  
Nathalia Ballesteros ◽  
Enzo Guerrero-Araya ◽  
...  

Current efforts to understand the epidemiology, transmission dynamics and emergence of novel SARS-CoV-2 variants worldwide has enabled the scientific community to generate critical information aimed at implementing disease surveillance and control measures, as well as to reduce the social, economic and health impact of the pandemic. Herein, we applied an epidemic model coupled with genomic analysis to assess the SARS-CoV-2 transmission dynamics in Colombia. This epidemic model allowed to identify the geographical distribution, Rt dynamics and predict the course of the pandemic considering current implementation of countermeasures. The analysis of the incidence rate per 100,000 inhabitants carried out across different regions of Colombia allowed visualizing the changes in the geographic distribution of cases. The cumulative incidence during the timeframe March 2020 to March 2021 revealed that Bogotá (8063.0), Quindío (5482.71), Amazonas (5055.68), Antioquia (4922.35) and Tolima (4724.41) were the departments with the highest incidence rate. The highest median Rt during the first period evaluated was 2.13 and 1.09 in the second period; with this model, we identified improving opportunities in health decision making related to controlling the pandemic, diagnostic testing capacity, case registration and reporting, among others. Genomic analysis revealed 52 circulating SARS-CoV-2 lineages in Colombia detected from 774 genomes sequenced throughout the first year of the pandemic. The genomes grouped into four main clusters and exhibited 19 polymorphisms. Our results provide essential information on the spread of the pandemic countrywide despite implementation of early containment measures. In addition, we aim to provide deeper phylogenetic insights to better understand the evolution of SARS-CoV-2 in light of the latent emergence of novel variants and how these may potentially influence transmissibility and infectivity.

2019 ◽  
Vol 4 (1) ◽  
pp. 201
Author(s):  
A A Ayoade ◽  
O J Peter ◽  
T A Ayoola ◽  
S Amadiegwu ◽  
A A Victor

Rabies is a viral disease that claims about 59 000 lives globally every year. The ignorance of the fact that man can be a carrier of the disease makes every practical and theoretical approach towards the study of the disease a good development. In this work, a mathematical model is designed to incorporate a saturated incidence rate such that the incidence rate is saturated around the infectious agents. The model is studied qualitatively via stability theory of nonlinear differential equations to assess the effects of general awareness, constant vaccination and the saturated treatment on the transmission dynamics of rabies disease. The effective reproduction number is derived and the numerical simulation is carried out to verify the analytical results. It is discovered that while general awareness plays pivotal roles in averting rabies death, multiple control measures have the tendency of driving rabies to extinction.


2017 ◽  
Vol 25 (03) ◽  
pp. 369-397 ◽  
Author(s):  
PARIMITA ROY ◽  
RANJIT KUMAR UPADHYAY

In this paper, we have formulated a compartmental epidemic model with exponentially decaying transmission rates to understand the Ebola transmission dynamics and study the impact of control measures to basic public health. The epidemic model exhibits two equilibria, namely, the disease-free and unique endemic equilibria. We have calculated the basic reproduction number through next generation matrix and investigated the spatial spread of the epidemic via reaction–diffusion modeling. Instead of fitting the model to the observed pattern of spread, we have used previously estimated parameter values and examined the efficacy of predictions of the designed model vis-à-vis the pattern of spread observed in Sierra Leone, West Africa. Further, we conducted a sensitivity analysis to determine the extent to which improvement in predictions is achievable through better parameterization.We performed numerical simulations with and without control measure for the designed model system. A significant reduction in infection and death cases were observed when proper control measures are incorporated in the model system. Two-dimensional simulation experiments show that infectious population and the number of deaths will increase up to one and a half years without control, but it will decline after two years. We have reported the numerical results, and it closely matches with the real situation in Sierra Leone.


Author(s):  
Hongjun Zhu ◽  
Yan Li ◽  
Xuelian Jin ◽  
Jiangping Huang ◽  
Xin Liu ◽  
...  

AbstractThe coronavirus disease 2019 (COVID-19) has grown up to be a pandemic within a short span of time. To investigate transmission dynamics and then determine control methodology, we took epidemic in Wuhan as a study case. Unfortunately, to our best knowledge, the existing models are based on the common assumption that the total population follows a homogeneous spatial distribution, which is not the case for the prevalence occurred both in the community and in hospital due to the difference in the contact rate. To solve this problem, we propose a novel epidemic model called SEIR-HC, which is a novel epidemic model with two different social circles. Using the model alongside the exclusive optimization algorithm, the spread process of COVID-19 epidemic in Wuhan city is reproduced and then the propagation characteristics and unknown data are estimated. Furthermore, the control measures implemented in Wuhan are assessed and the control methodology of COVID-19 is discussed to provide guidance for limiting the epidemic spread.


2020 ◽  
Author(s):  
Xu-Sheng Zhang ◽  
Wei Liu ◽  
Huan Xiong ◽  
Zhengji Chen

Abstract To control and contain the outbreaks of emerging infectious diseases such as COVID-19, it is important to know how easy and fast they transmit among people. To explore the essential information of the novel infectious agents, people always confront an inverse problem: using (partially) observed numbers of infected people by time and region to dig up the underlying characteristics of unknown infectious agents. Epidemics armed with advanced statistical inference and mathematical theory has been developed to help reconstruct transmission dynamics processes and to estimate key features of infectious diseases. In this study we use COVID-19 outbreak in Shaanxi province as an example to illustrate how the infectious disease dynamics method can be used to help build the transmission process and to estimate the transmissibility of COVID-19. Three transmission dynamics models were proposed for this. By separating continuous importation from local transmission and treating imported cases as the source rather than results of local transmission, the basic reproduction number of COVID-19 in Shaanxi province was estimated in the range from 0.46 to 0.61, well below the critical value of 1.0. This indicates that COVID-19 cannot self-sustain in Shaanxi province and reflects the timely and strong control measures taken in Shaanxi province.


2021 ◽  
Vol 22 ◽  
pp. 103836
Author(s):  
Amir Khan ◽  
Rahat Zarin ◽  
Ghulam Hussain ◽  
Auwalu Hamisu Usman ◽  
Usa Wannasingha Humphries ◽  
...  

Author(s):  
Ting Wan Tan ◽  
Han Ling Tan ◽  
Man Na Chang ◽  
Wen Shu Lin ◽  
Chih Ming Chang

(1) Background: The implementation of effective control measures in a timely fashion is crucial to control the epidemic outbreak of COVID-19. In this study, we aimed to analyze the control measures implemented during the COVID-19 outbreak, as well as evaluating the responses and outcomes at different phases for epidemic control in Taiwan. (2) Methods: This case study reviewed responses to COVID-19 and the effectiveness of a range of control measures implemented for epidemic control in Taiwan and assessed all laboratory-confirmed cases between 11 January until 20 December 2020, inclusive of these dates. The confirmation of COVID-19 infection was defined as the positive result of a reverse-transcriptase–polymerase-chain-reaction test taken from a nasopharyngeal swab. Test results were reported by the Taiwan Centers for Disease Control. The incidence rate, mortality rate, and testing rate were compiled, and the risk ratio was provided to gain insights into the effectiveness of prevention measures. (3) Results and Discussion: This study presents retrospective data on the COVID-19 incidence rate in Taiwan, combined with the vital preventive control measures, in a timeline of the early stage of the epidemic that occurred in Taiwan. The implementation of multiple strategy control measures and the assistance of technologies to control the COVID-19 epidemic in Taiwan led to a relatively slower trend in the outbreak compared to the neighboring countries. In Taiwan, 766 confirmed patients were included, comprised of 88.1% imported cases and 7.2% local transmission cases, within the studied period. The incidence rate of COVID-19 in Taiwan during the studied period was 32 per million people, with a mortality rate of 0.3 per million people. Our analysis showed a significantly raised incidence risk ratio in the countries of interest in comparison to Taiwan during the study period; in the range of 1.9 to 947.5. The outbreak was brought under control through epidemic policies and hospital strategies implemented by the Taiwan Government. (4) Conclusion: Taiwan’s preventive strategies resulted in a drastically lower risk for Taiwan nationals of contracting COVID-19 when new pharmaceutical drug or vaccines were not yet available. The preventive strategies employed by Taiwan could serve as a guide and reference for future epidemic control strategies.


Author(s):  
Francis Mugabi ◽  
Joseph Mugisha ◽  
Betty Nannyonga ◽  
Henry Kasumba ◽  
Margaret Tusiime

AbstractThe problem of foot and mouth disease (FMD) is of serious concern to the livestock sector in most nations, especially in developing countries. This paper presents the formulation and analysis of a deterministic model for the transmission dynamics of FMD through a contaminated environment. It is shown that the key parameters that drive the transmission of FMD in a contaminated environment are the shedding, transmission, and decay rates of the virus. Using numerical results, it is depicted that the host-to-host route is more severe than the environmental-to-host route. The model is then transformed into an optimal control problem. Using the Pontryagin’s Maximum Principle, the optimality system is determined. Utilizing a gradient type algorithm with projection, the optimality system is solved for three control strategies: optimal use of vaccination, environmental decontamination, and a combination of vaccination and environmental decontamination. Results show that a combination of vaccination and environmental decontamination is the most optimal strategy. These results indicate that if vaccination and environmental decontamination are used optimally during an outbreak, then FMD transmission can be controlled. Future studies focusing on the control measures for the transmission of FMD in a contaminated environment should aim at reducing the transmission and the shedding rates, while increasing the decay rate.


2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Yakui Xue ◽  
Tiantian Li

We study a delayed SIR epidemic model and get the threshold value which determines the global dynamics and outcome of the disease. First of all, for anyτ, we show that the disease-free equilibrium is globally asymptotically stable; whenR0<1, the disease will die out. Directly afterwards, we prove that the endemic equilibrium is locally asymptotically stable for anyτ=0; whenR0>1, the disease will persist. However, for anyτ≠0, the existence conditions for Hopf bifurcations at the endemic equilibrium are obtained. Besides, we compare the delayed SIR epidemic model with nonlinear incidence rate to the one with bilinear incidence rate. At last, numerical simulations are performed to illustrate and verify the conclusions.


Sign in / Sign up

Export Citation Format

Share Document