scholarly journals Scheduling of a Microgrid with High Penetration of Electric Vehicles Considering Congestion and Operations Costs

Vehicles ◽  
2021 ◽  
Vol 3 (3) ◽  
pp. 578-594
Author(s):  
Alejandra Nitola ◽  
Jennyfer Marin ◽  
Sergio Rivera

This paper reviews the impact that can be presented by the immersion of generation sources and electric vehicles into the distribution network, with a technical, operational and commercial approach, given by the energy transactions between customer and operator. This requires a mathematical arrangement to identify the balance between congestion and the operating cost of a microgrid when the operation scheduling of the system a day ahead of horizon time it is required. Thus, this research is directed to the solution, using heuristic algorithms, since they allow the non-convex constraints of the proposed mathematical problem. The optimization algorithm proposed for the analysis is given by the Multi-Object Particle Swarm Optimization (MOPSO) method, which provides a set of solutions that are known as Optimal Pareto. This algorithm is presented in an IEEE 141-bus system, which consists of a radial distribution network that considers 141 buses used by Matpower; this system was modified and included a series of renewable generation injections, systems that coordinate electric vehicles and battery storage, and the slack node was maintained and assumed to have (traditional generation). In the end it can be shown that the algorithm can provide solutions for network operation planning, test system robustness and verify some contingencies comparatively, always optimizing the balance between congestion and cost.

2021 ◽  
Vol 13 (6) ◽  
pp. 3199
Author(s):  
Laith Shalalfeh ◽  
Ashraf AlShalalfeh ◽  
Khaled Alkaradsheh ◽  
Mahmoud Alhamarneh ◽  
Ahmad Bashaireh

An increasing number of electric vehicles (EVs) are replacing gasoline vehicles in the automobile market due to the economic and environmental benefits. The high penetration of EVs is one of the main challenges in the future smart grid. As a result of EV charging, an excessive overloading is expected in different elements of the power system, especially at the distribution level. In this paper, we evaluate the impact of EVs on the distribution system under three loading conditions (light, intermediate, and full). For each case, we estimate the maximum number of EVs that can be charged simultaneously before reaching different system limitations, including the undervoltage, overcurrent, and transformer capacity limit. Finally, we use the 19-node distribution system to study these limitations under different loading conditions. The 19-node system is one of the typical distribution systems in Jordan. Our work estimates the upper limit of the possible EV penetration before reaching the system stability margins.


Energies ◽  
2019 ◽  
Vol 12 (24) ◽  
pp. 4717 ◽  
Author(s):  
Sylvester Johansson ◽  
Jonas Persson ◽  
Stavros Lazarou ◽  
Andreas Theocharis

Social considerations for a sustainable future lead to market demands for electromobility. Hence, electrical power distribution operators are concerned about the real ongoing problem of the electrification of the transport sector. In this regard, the paper aims to investigate the large-scale integration of electric vehicles in a Swedish distribution network. To this end, the integration pattern is taken into consideration as appears in the literature for other countries and applies to the Swedish culture. Moreover, different charging power levels including smart charging techniques are examined for several percentages of electric vehicles penetration. Industrial simulation tools proven for their accuracy are used for the study. The results indicate that the grid can manage about 50% electric vehicles penetration at its current capacity. This percentage decreases when higher charging power levels apply, while the transformers appear overloaded in many cases. The investigation of alternatives to increase the grid’s capabilities reveal that smart techniques are comparable to the conventional re-dimension of the grid. At present, the increased integration of electric vehicles is manageable by implementing a combination of smart gird and upgrade investments in comparison to technically expensive alternatives based on grid digitalization and algorithms that need to be further confirmed for their reliability for power sharing and energy management.


2018 ◽  
Vol 1 (2) ◽  
Author(s):  
Dalila M.S. ◽  
Zaris I.M.Y. ◽  
Nasarudin A. ◽  
Faridah H.

This paper purposely to examine and analyse the impact of the distribution capacitors banks operation to the transition of total harmonic distortion (THD) level in distribution network system. The main advantage of this work is the simplicity algorithm of the method and the system being analysed using free access open software which is known as electric power distribution system simulator (OpenDSS). In this paper, the harmonic current spectrum which is collected from the commercial site was injected to a node point on IEEE13 bus in order to provide the initial measurement of THD for the network. The proper sizing of the capacitors banks has been set and being deactivated and activated throughout the network to see the transistion in the THD level in the system. The results were achieved by simulation of the data on the configured IEEE13 bus. The simulation work was done by using the combination of C++ source codes, OpenDSS and Microsoft Excel software. From the output results, the THD current has increased up to two times from the initial value in certain phases and for the THD voltage, the THD has increased up to three times from its initial value in all phases.


Energies ◽  
2019 ◽  
Vol 12 (6) ◽  
pp. 972 ◽  
Author(s):  
Fermín Barrero-González ◽  
Victor Pires ◽  
José Sousa ◽  
João Martins ◽  
María Milanés-Montero ◽  
...  

The proliferation of residential photovoltaic (PV) prosumers leads to detrimental impacts on the low-voltage (LV) distribution network operation such as reverse power flow, voltage fluctuations and voltage imbalances. This is due to the fact that the strategies for the PV inverters are usually designed to obtain the maximum energy from the panels. The most recent approach to these issues involves new inverter-based solutions. This paper proposes a novel comprehensive control strategy for the power electronic converters associated with PV installations to improve the operational performance of a four-wire LV distribution network. The objectives are to try to balance the currents demanded by consumers and to compensate the reactive power demanded by them at the expense of the remaining converters’ capacity. The strategy is implemented in each consumer installation, constituting a decentralized or distributed control and allowing its practical implementation based on local measurements. The algorithms were tested, in a yearly simulation horizon, on a typical Portuguese LV network to verify the impact of the high integration of the renewable energy sources in the network and the effectiveness and applicability of the proposed approach.


Author(s):  
B. D. Tavares ◽  
J. Sumaili ◽  
F. J. Soares ◽  
A. G. Madureira ◽  
R. Ferreira

2021 ◽  
Vol 13 (17) ◽  
pp. 9579
Author(s):  
Mikka Kisuule ◽  
Ignacio Hernando-Gil ◽  
Jonathan Serugunda ◽  
Jane Namaganda-Kiyimba ◽  
Mike Brian Ndawula

Electricity-distribution network operators face several operational constraints in the provision of safe and reliable power given that investments for network area reinforcement must be commensurate with improvements in network reliability. This paper provides an integrated approach for assessing the impact of different operational constraints on distribution-network reliability by incorporating component lifetime models, time-varying component failure rates, as well as the monetary cost of customer interruptions in an all-inclusive probabilistic methodology that applies a time-sequential Monte Carlo simulation. A test distribution network based on the Roy Billinton test system was modelled to investigate the system performance when overloading limits are exceeded as well as when preventive maintenance is performed. Standard reliability indices measuring the frequency and duration of interruptions and the energy not supplied were complemented with a novel monetary reliability index. The comprehensive assessment includes not only average indices but also their probability distributions to adequately describe the risk of customer interruptions. Results demonstrate the effectiveness of this holistic approach, as the impacts of operational decisions are assessed from both reliability and monetary perspectives. This informs network planning decisions through optimum investments and consideration of customer outage costs.


Author(s):  
Kaida Feng ◽  
Yanling Zhong ◽  
Binzhuo Hong ◽  
Xiaomei Wu ◽  
Chun Sing Lai ◽  
...  

Energies ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 6589
Author(s):  
Claude Ziad El-Bayeh ◽  
Mohamed Zellagui ◽  
Brahim Brahmi ◽  
Walid Alqaisi ◽  
Ursula Eicker

High penetration levels of Plug-in Electric Vehicles (PEVs) could cause stress on the network and might violate the limits and constraints under extreme conditions, such as exceeding power and voltage limits on transformers and power lines. This paper defines extreme conditions as the state of a load or network that breaks the limits of the constraints in an optimization model. Once these constraints are violated, the optimization algorithm might not work correctly and might not converge to a feasible solution, especially when the complexity of the system increases and includes nonlinearities. Hence, the algorithm may not help in mitigating the impact of penetrating PEVs under extreme conditions. To solve this problem, an original algorithm is suggested that is able to adapt the constraints’ limits according to the energy demand and the energy needed to charge the PEVs. Different case scenarios are studied for validation purposes, such as charging PEVs under different state of charge levels, different energy demands at home, and different pricing mechanisms. Results show that our original algorithm improved the profiles of the voltage and power under extreme conditions. Hence, the algorithm is able to improve the integration of a high number of PEVs on the distribution system under extreme conditions while preserving its stability.


Energies ◽  
2020 ◽  
Vol 13 (4) ◽  
pp. 957 ◽  
Author(s):  
Carlo Baron ◽  
Ameena S. Al-Sumaiti ◽  
Sergio Rivera

Planning the operation scheduling with optimization heuristic algorithms allows microgrids to have a convenient tool. The developments done in this study attain this scheduling taking into account the impact of energy storage useful life in the microgrid operation. The scheduling solutions, proposed for the answer of an optimization problem, are obtained by using a metaheuristic algorithm called Differential Evolutionary Particle Swarm Optimization (DEEPSO). Thanks to the optimization that is conducted in this study, it is possible to formulate dispatches of the existent microgrid (MG) by always looking for the ideal dispatch that implies a lower cost and provides a greater viability to any project related to renewable energy, electric vehicles and energy storage. These advances oblige the battery manufacturers to start looking for more powerful batteries, with lower costs and longer useful life. In this way, this paper proposes a scheduling tool considering the energy storage useful life.


Sign in / Sign up

Export Citation Format

Share Document