scholarly journals Evaluating the Erosion Process from a Single-Stripe Laser-Scanned Topography: A Laboratory Case Study

Water ◽  
2018 ◽  
Vol 10 (7) ◽  
pp. 956 ◽  
Author(s):  
Yung-Chieh Wang ◽  
Chun-Chen Lai

Topographies during the erosion process obtained from the single-stripe laser-scanning method may provide an accurate, but affordable, soil loss estimation based on high-precision digital elevation model (DEM) data. In this study, we used laboratory erosion experiments with a sloping flume, a rainfall simulator, and a stripe laser apparatus to evaluate topographic changes of soil surface and the erosion process. In the experiments, six slope gradients of the flume (5° to 30° with an increment of 5°) were used and the rainfall simulator generated a 30-min rainfall with the kinetic energy equivalent to 80 mm/h on average. The laser-scanned topography and sediment yield were collected every 5 min in each test. The difference between the DEMs from laser scans of different time steps was used to obtain the eroded soil volumes and the corresponding estimates of soil loss in mass. The results suggest that the collected sediment yield and eroded soil volume increased with rainfall duration and slope, and quantified equations are proposed for soil loss prediction using rainfall duration and slope. This study shows the applicability of the stripe laser-scanning method in soil loss prediction and erosion evaluation in a laboratory case study.

2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Yabin Wu ◽  
Jianhua Hu ◽  
Chengyu Xie ◽  
Dongping Shi

Predicting and controlling the collapse of surrounding rock (especially broken rock masses) in underground chambers is an important topic in mining and geotechnical engineering. Based on an example, this paper introduces a case study of surrounding rock stability control technology in stope mining around abandoned areas. Based on on-site coring, mechanical properties of rock samples, and on-site grouting reinforcement technology, the TRT6000 advanced geological prediction system was used to predict the stability status of the surrounding rock of the underground chamber. AUTODYNA software was used to build a dynamic coupling model for numerical simulation prediction and optimization of blasting parameters and to reveal the dynamic variation in the surrounding rock. The dynamic failure process of the surrounding rock of the chamber before and after optimization of the blasting parameters is simulated, and the deformation characteristics and damage and acoustic emission characteristics of the surrounding rock are clearly shown. The surrounding rock failure first appeared around the surface of the underground chamber because of the high stress concentration around the surface of the chamber after blasting; with the interaction between the explosive gas and the rock mass, the damaged area further propagated into the external rock, eventually leading to a large damage area. At the same time, there is a large tensile failure in the rock, resulting in expansion and rupture around the underground chamber. Finally, the 3D laser scanning method is used to verify the superiority of the optimized blasting initiation sequence. The new edge hole detonation sequence can effectively improve the blasting vibration and successfully control the further damage of the surrounding rock of the underground chamber, thus proving the edge hole drug pack. Moreover, the initiation mode of the delay stage of the side hole charge is determined. This study provides a useful reference for the stability control of surrounding rock in mining in mining areas.


Soil Research ◽  
1984 ◽  
Vol 22 (4) ◽  
pp. 401 ◽  
Author(s):  
RJ Loch

Simulated rain has been widely used to derive soil erodibility (K) values for the Universal Soil Loss Equation (USLE). Because of concern that recent work using smaller plots may not give realistic results, this paper considers the effects of plot length and erosion process on values of K derived from rainfall simulator studies. It also highlights problems in the calculation of K from rainfall simulator data, using the factors of the USLE. Rainulator data on slope length/erosion process interactions were used to calculate soil losses and K for plot lengths of 10.7 and 22.5 m tilled up and down the slope, on two soils, both on 4% slope. K showed up to threefold variation with changes in plot length, because different erosion processes contributed to soil loss. The results also showed major differences between single-event and annual average responses of erosion to slope length, leading to the conclusion that the annual average factors of the USLE cannot be used to analyse single-event rainfall simulator data. Instead, rainfall simulator data must be converted to average annual soil losses, which can then be validly analysed, using the factors of the USLE, to derive K. The procedures presently used to calculate annual average soil losses from rainfall simulator data do not take into account erosion process/runoff rate interactions, and are therefore unsatisfactory. Single-event soil loss models may provide a means for producing better estimates of annual average soil losses suitable for the derivation of K.


2020 ◽  
Vol 118 (1) ◽  
pp. 106
Author(s):  
Lei Zhang ◽  
Jianliang Zhang ◽  
Kexin Jiao ◽  
Guoli Jia ◽  
Jian Gong ◽  
...  

The three-dimensional (3D) model of erosion state of blast furnace (BF) hearth was obtained by using 3D laser scanning method. The thickness of refractory lining can be measured anywhere and the erosion curves were extracted both in the circumferential and height directions to analyze the erosion characteristics. The results show that the most eroded positions located below 20# tuyere with an elevation of 7700 mm and below 24#–25# tuyere with an elevation of 8100 mm, the residual thickness here is only 295 mm. In the circumferential directions, the serious eroded areas located between every two tapholes while the taphole areas were protected well by the bonding material. In the height directions, the severe erosion areas located between the elevation of 7600 mm to 8200 mm. According to the calculation, the minimum depth to ensure the deadman floats in the hearth is 2581 mm, corresponding to the elevation of 7619 mm. It can be considered that during the blast furnace production process, the deadman has been sinking to the bottom of BF hearth and the erosion areas gradually formed at the root of deadman.


2019 ◽  
Vol 7 (2) ◽  
pp. 100-111
Author(s):  
Miskar Maini ◽  
Junita Eka Susanti

Standar permintaan engineering pesawat agar desain bangunan infrastruktur di area Air Strip Runway 2600 yang ada dapat mempunyai fungsi lain. Sedangkan kondisi lain sangat menentukan keselamatan karena lahan di sekitar Air Strip Runway 2600 Bandara Depati Amir (PGK) jika tidak ditutupi vegetasi seperti rumput, kondisi lain lahan yang belum ditutupi vegetasi di sekitar Air Strip Runway 2600 berpotensi akan mengalami erosi lahan, kemudian hasil erosi lahan ini akan terbawa oleh aliran air sehingga akan masuk ke saluran drainase yang akan menyebabkan sedimentasi pada saluran drainase tersebut, akhirnya akan berkurang efektifitas kinerja saluran drainase tersebut. Metode yang digunakan untuk memprediksi laju rata-rata erosi di area Air Strip Runway 2600 dengan memperhitungkan faktor erosivitas hujan, erodibilitas tanah, kemiringan lereng atau panjang lereng, pengelolaan tanaman dan konservasi tanah, yang masing masing tata guna lahan tersebut mengacu pada Masterplan Ultimate Bandara Depati Amir (PGK). Perhitungan dilakukan menggunakan persamaan USLE (Universal Soil Loss Equation) yang dikembangkan oleh Wischmeier dan Smith (1965, 1978), kemudian Sediment Delivery Ratio (SDR) dan Sediment Yield.Hasil penelitian ini, prediksi laju erosi permukaan pada area Air Strip Runway 2600 Bandara Depati Amir (PGK) tahun pertama yang mencapai 5,60 mm/tahun atau 100,76 Ton/Ha/tahun, laju erosi tahun kedua mencapai 3,38 mm/tahun atau 60,84 Ton/Ha/tahun dapat diklasifikasikan ke dalam kelas bahaya erosi sedang (kelas III) dan nilai SDR adalah sebesar 56,3%, nilai sediment yield (SR) pada tahun pertama sebesar 5.887,59 Ton/Tahun, pada tahun kedua ketika rumput pada area Air Strip telah tumbuh dengan sempurna terjadi penurunan hasil sediment yield yaitu nilai SR sebesar 3.554,85 Ton/Tahun.


Author(s):  
Kristopher D. Staller

Abstract Cold temperature failures are often difficult to resolve, especially those at extreme low levels (< -40°C). Momentary application of chill spray can confirm the failure mode, but is impractical during photoemission microscopy (PEM), laser scanning microscopy (LSM), and multiple point microprobing. This paper will examine relatively low-cost cold temperature systems that can hold samples at steady state extreme low temperatures and describe a case study where a cold temperature stage was combined with LSM soft defect localization (SDL) to rapidly identify the cause of a complex cold temperature failure mechanism.


Sign in / Sign up

Export Citation Format

Share Document