scholarly journals The Combination of Coagulation and Adsorption for Controlling Ultra-Filtration Membrane Fouling in Water Treatment

Water ◽  
2019 ◽  
Vol 11 (1) ◽  
pp. 90 ◽  
Author(s):  
Fan Bu ◽  
Baoyu Gao ◽  
Qinyan Yue ◽  
Caiyu Liu ◽  
Wenyu Wang ◽  
...  

Ultra-filtration technology has been increasingly used in drinking water treatment due to improvements in membrane performance and lowering of costs. However, membrane fouling is the main limitation in the application of ultra-filtration technology. In this study, we investigated the impact of four different pre-treatments: Coagulation, adsorption, coagulation followed by adsorption (C-A), and simultaneous coagulation and adsorption (C+A), on membrane fouling and natural organic matter removal efficiency. The results showed that adsorption process required a large amount of adsorbent and formed a dense cake layer on the membrane surface leading to severe membrane fouling. Compared to adsorption alone, the coagulation and C-A processes decreased the transmembrane pressure by 4.9 kPa. It was due to less accumulation of particles on the membrane surface. As for water quality, the C-A ultra-filtration process achieved the highest removal efficiencies of natural organic matter and disinfection by-product precursors. Therefore, the addition of adsorbent after coagulation is a potentially important approach for alleviating ultra-filtration membrane fouling and enhancing treatment performance.

2004 ◽  
Vol 4 (5-6) ◽  
pp. 215-222 ◽  
Author(s):  
A.R. Costa ◽  
M.N. de Pinho

Membrane fouling by natural organic matter (NOM), namely by humic substances (HS), is a major problem in water treatment for drinking water production using membrane processes. Membrane fouling is dependent on membrane morphology like pore size and on water characteristics namely NOM nature. This work addresses the evaluation of the efficiency of ultrafiltration (UF) and Coagulation/Flocculation/UF performance in terms of permeation fluxes and HS removal, of the water from Tagus River (Valada). The operation of coagulation with chitosan was evaluated as a pretreatment for minimization of membrane fouling. UF experiments were carried out in flat cells of 13.2×10−4 m2 of membrane surface area and at transmembrane pressures from 1 to 4 bar. Five cellulose acetate membranes were laboratory made to cover a wide range of molecular weight cut-off (MWCO): 2,300, 11,000, 28,000, 60,000 and 75,000 Da. Severe fouling is observed for the membranes with the highest cut-off. In the permeation experiments of raw water, coagulation prior to membrane filtration led to a significant improvement of the permeation performance of the membranes with the highest MWCO due to the particles and colloidal matter removal.


Membranes ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 968
Author(s):  
Zhun Ma ◽  
Lu Zhang ◽  
Ying Liu ◽  
Xiaosheng Ji ◽  
Yuting Xu ◽  
...  

The fouling mechanism of the anion exchange membrane (AEM) induced by natural organic matter (NOM) in the absence and presence of calcium ions was systematically investigated via the extended Derjaguin–Landau–Verwey–Overbeek (xDLVO) approach. Sodium alginate (SA), humic acid (HA), and bovine serum albumin (BSA) were utilized as model NOM fractions. The results indicated that the presence of calcium ions tremendously aggravated the NOM fouling on the anion exchange membrane because of Ca-NOM complex formation. Furthermore, analysis of the interaction energy between the membrane surface and foulants via xDLVO revealed that short-range acid–base (AB) interaction energy played a significant role in the compositions of interaction energy during the electrodialysis (ED) process. The influence of NOM fractions in the presence of calcium ions on membrane fouling followed the order: SA > BSA > HA. This study demonstrated that the interaction energy was a dominating indicator for evaluating the tendency of anion exchange membranes fouling by natural organic matter.


2019 ◽  
Vol 5 (12) ◽  
pp. 2242-2250
Author(s):  
Xue Shen ◽  
Baoyu Gao ◽  
Kangying Guo ◽  
Qinyan Yue

Coagulation prior to the ultrafiltration (UF) process was implemented to improve natural organic matter (NOM) removal and membrane permeability.


2004 ◽  
Vol 50 (12) ◽  
pp. 279-285 ◽  
Author(s):  
J.H. Kweon ◽  
D.F. Lawler

The biggest impediment for applying membrane processes is fouling that comes from mass flux (such as particle and organic matter) to the membrane surface and its pores. Numerous research articles have indicated that either particles or natural organic matter (NOM) has been the most detrimental foulant. Therefore, the role of particles in membrane fouling was investigated with two synthetic waters (having either particles alone or particles with simple organic matter) and a natural water. Membrane fouling was evaluated with flux decline behavior and direct images from scanning electron microscopy. The results showed that the combined fouling by kaolin and dextran (a simple organic compound selected as a surrogate for NOM) showed no difference from the fouling with only the organic matter. The similarity might stem from the fact that dextran (i.e., polysaccharide) has no ability to be adsorbed on the clay material, so that the polysaccharide behaves the same with respect to the membrane with or without clay material being present. In contrast to kaolin, the natural particles showed a dramatic effect on membrane fouling.


2020 ◽  
Vol 988 ◽  
pp. 114-121 ◽  
Author(s):  
Mahmud ◽  
Muthia Elma ◽  
Erdina Lulu Atika Rampun ◽  
Aulia Rahma ◽  
Amalia Enggar Pratiwi ◽  
...  

Natural Organic Matter (NOM) content in peat water is a major problem of membrane fouling in ultrafiltration (UF). For that, two stages adsorption as pre-treatment was employed to minimize the membrane fouling of NOM content. This research was carried out to investigate the effect of two stages adsorption on ultrafiltration performance for NOM removal that remains in peat water. This method was using powdered activated carbon (PAC) dosage of 80, 160, 240, 320, 400, 480, 560, 640, 720, 800, 880 dan 960 mg.L-1. Then, Polysulfone (Psf) material was employed for Ultra filtration process. Membrane was applied in a dead-end mode with various operating pressure (1; 1.5; 2; 2.5; 3 bar). As a results, the optimum dose of PAC was 800 mg L-1 with dosage ratio of 3/4:1/4. Two stages adsorption-UF PSf provided the range from 86.9 to 92.8% of KMnO4 and 74.1-88.1% of UV254. For the experimental condition of 3 bar, the highest flux was achieved up to 39.919 L h-1.m-2.


Membranes ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 643
Author(s):  
Hongjian Yu ◽  
Weipeng Huang ◽  
Huachen Liu ◽  
Tian Li ◽  
Nianping Chi ◽  
...  

The combination of conventional and advanced water treatment is now widely used in drinking water treatment. However, membrane fouling is still the main obstacle to extend its application. In this study, the impact of the combination of coagulation and ultrafiltration (UF) membrane rotation on both fouling control and organic removal of macro (sodium alginate, SA) and micro organic matters (tannic acid, TA) was studied comprehensively to evaluate its applicability in drinking water treatment. The results indicated that membrane rotation could generate shear stress and vortex, thus effectively reducing membrane fouling of both SA and TA solutions, especially for macro SA organics. With additional coagulation, the membrane fouling could be further reduced through the aggregation of mediate and macro organic substances into flocs and elimination by membrane retention. For example, with the membrane rotation speed of 60 r/min, the permeate flux increased by 90% and the organic removal by 35% in SA solution, with 40 mg/L coagulant dosage, with an additional 70% increase of flux and 5% increment of organic removal to 80% obtained. However, too much shear stress could intensify the potential of fiber breakage at the potting, destroying the flocs and resulting in the reduction of permeate flux and deterioration of effluent quality. Finally, the combination of coagulation and membrane rotation would lead to the shaking of the cake layer, which is beneficial for fouling mitigation and prolongation of membrane filtration lifetime. This study provides useful information on applying the combined process of conventional coagulation and the hydrodynamic shear force for drinking water treatment, which can be further explored in the future.


Water ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 1990 ◽  
Author(s):  
Peng Du ◽  
Xing Li ◽  
Yanling Yang ◽  
Zhiwei Zhou ◽  
Xiaoyan Fan ◽  
...  

Gravity-driven membrane (GDM) ultrafiltration is a promising water treatment method due to its low energy consumption and low maintenance. However, the low stable permeability in algae-laden water treatment is currently limiting its wider application. With the ultimate goal of increasing permeability, the aim of this study was to evaluate the effect of a composite coagulant of aluminum sulfate-chitosan (AS-CS) on the GDM filtration performance. In parallel tests with a single AS coagulant and without pre-coagulation, the analysis of membrane fouling resistance and the membrane fouling mechanism were evaluated. The results indicated that the AS-CS/GDM system can alleviate 23.74% and 58.80% membrane fouling, respectively, compared with AS/GDM and the GDM system. The AS-CS/GDM system can effectively remove humic-like substances having a molecular weight (MW) of 3–100 kDa, resulting in removal of 98.32% of algae cells and removal of 66.25% of dissolved organic carbon; the AS-CS/GDM system thereby improved the concentration of attached biomass on the membrane surface with the stronger biodegradability of organic matters. The application of AS-CS pre-coagulation in the GDM process could enhance the proliferation of microorganisms and the removal of low molecular weight humic-like substances. Therefore, the AS-CS/GDM system is a potentially important approach for algae-laden water treatment.


2004 ◽  
Vol 4 (5-6) ◽  
pp. 207-213 ◽  
Author(s):  
K.-H. Choo ◽  
I.-H. Park ◽  
S.-J. Choi

Natural organic matter (NOM) removal and membrane fouling were investigated using iron oxide-coated microfiltration (MF) systems for drinking water treatment. Addition of iron oxide particle (IOP) adsorbents into MF always improved NOM removal and reduced fouling, but IOP dosing methods did affect the membrane performance. The IOP coating layer formed on the membrane surface played a major role in preventing membrane fouling by residual NOM in water. Pre-mixing of IOP with raw water followed by continuous injection into the MF system controlled membrane fouling better than pre- and intermittent loadings of IOP. This could be in close association with the distribution of IOPs across the hollow fiber MF surfaces and the effectiveness of contact of IOP with feedwater. The turbidity of water influenced the MF system with intermittent IOP loads more greatly than that with IOP in suspension. There existed an optimal IOP dose where membrane fouling can be minimized achieving maximal NOM removal.


Sign in / Sign up

Export Citation Format

Share Document