scholarly journals Study of Sludge Particles Formed during Coagulation of Synthetic and Municipal Wastewater for Increasing the Sludge Dewatering Efficiency

Water ◽  
2019 ◽  
Vol 11 (1) ◽  
pp. 101
Author(s):  
Lech Smoczynski ◽  
Slawomir Kalinowski ◽  
Igor Cretescu ◽  
Michal Smoczynski ◽  
Harsha Ratnaweera ◽  
...  

Municipal wastewater sludge was produced by chemical coagulation of synthetic wastewater (sww) based on Synthene Scarlet P3GL disperse dye and real municipal wastewater (nww), coagulated by commercial coagulants PAX (prepolymerised aluminum coagulant) and PIX (a ferric coagulant based on Fe2(SO4)3). An attempt was made to correlate the sludge’s dewatering capacity (in terms of capillary suction time—CST) with operation parameters for wastewater treatment, size distribution and specific surface area of the sludge particles. It was found that the presence of phosphate ions in the system facilitates the removal efficiency of the above-mentioned dye (L) due to the interaction between the dye molecules and H2PO4− ions. Unlike sww, negatively charged organic substances (sorg) in nww are directly adsorbed on the surface of colloidal particles {Fe(OH)3} and {Al(OH)3} (prtc). It was also discovered that an increase in the dose of a coagulant led to an increase of CST for sww sludge and to a decrease of CST for nww sludge. It has been suggested that flocs composed of spherical {Al(OH)3} units possessed more internal space for water than aggregates consisting of rod-shaped {Fe(OH)3} units and, consequently, it is more difficult to remove water from Al-sww sludge than from Fe-sww. The results obtained showed that smaller particles dominate in sww sludge, while larger particles are prevalent in nww sludge. To explain this distinct difference in the size distribution of particles in sludge obtained with the use of Al3+ and Fe3+, simple models of aggregation and agglomeration-flocculation processes (aaf) of treated wastewater have been proposed. Except for PIX in nww, the analyzed particles of the investigated types of sludge were characterized by similar specific surface area (Sps), regardless of the kind of sludge or the applied coagulant. Slightly larger, negatively-charged sorg bridges, anchored directly on the surface of positive prtc are more effective in closing the structure of nww sludge than small L bridges of the dye molecules anchored on the surface of prtc via H2PO4−. All the discovered aspects could lead to improved performance of wastewater treatment plants (WWTP) by increasing the efficiency of sludge dewatering.

Author(s):  
Josefa Fernández Ferreras ◽  
Hipolito García Posadas ◽  
Jose Luis Rico Gutierrez ◽  
Josefina Renedo Omaechevarría

This work aims to develop new uses for sewage sludge, which is a byproduct of municipal wastewater treatment plants, by examining the calcination of this waste, the characterization of ashes is obtained, and its use to prepare desulfurant sorbents. Samples of sewage sludge were obtained from a local municipal wastewater treatment plant. This plant applies a pre-treatment followed by a biological treatment, where anaerobic digestion and centrifugation reduces the sludge. Three samples were characterized (in humidity, volatile and fixed solids content), dried, and ignited at two temperatures, 550 and 750°C. The composition of the ash obtained at both ignition temperatures was studied by x-ray fluorescent spectroscopy and the BET specific surface area of the two ashes and of the prepared sorbents was measured. Ash composition was similar for the two temperatures tested, where the components were Si, Ca, Al, Fe, P, S, Mg, K, Cl, Zn and Ti. BET specific surface area values indicate that the lower temperature of calcination produces ash with the highest SSA values (18 m2/g against near 10 m2/g). Preparation of desulfurant sorbents was carried out by mixing the ash with CaO or Ca(OH)2 at room temperature and different experimental conditions. The BET SSA of the prepared desulfurant sorbents showed higher values for the sorbents prepared with the ashes obtained at the lowest temperature. The behaviour of the ash and the prepared sorbents was tested in a fixed bed reactor at 58°C with a flue gas containing 5000 ppm of SO2 with a relative humidity of 55%. Results in the desulfurization process show that the calcium from the sludge seems more efficient than the calcium added as CaO or Ca(OH)2 to prepare the sorbents.


2015 ◽  
Vol 22 (6) ◽  
Author(s):  
Nazile Ural

AbstractIn this study, the relationships between geotechnical index properties and the pore-size distribution of compacted natural silt and artificial soil mixtures, namely, silt with two different clays and three different clay percentages (10%, 20%, and 40%), were examined and compared. Atterberg’s limit tests, standard compaction tests, mercury intrusion porosimetry, X-ray diffraction, scanning electron microscopy (SEM) analysis, and Brunauer-Emmett-Teller specific surface analysis were conducted. The results show that the liquid limit, the cumulative pore volume, and specific surface area of artificially mixed soils increase with an increase in the percentage of clay. The cumulative pore volume and specific surface area with geotechnical index properties were compared. High correlation coefficients were observed between the specific areas and both the liquid limit and the plasticity index, as well as between the cumulative pore volume and both the clay percentage and the


2019 ◽  
Vol 80 (4) ◽  
pp. 737-746
Author(s):  
Rishi Gurjar ◽  
Akshay D. Shende ◽  
Girish R. Pophali

Abstract Studies on laboratory-scale submerged aerobic fixed film reactor (SAFF) packed with synthetic media having specific surface area of 165 m2/m3 with a void volume of 89% were carried out to assess its performance under various organic loading rates (OLR) and hydraulic retention times (HRT). Synthetic wastewater having chemical oxygen demand (COD) and biochemical oxygen demand (BOD) of 400 ± 10% and 210 ± 10% mg/L respectively was fed and the reactor was subjected to OLRs ranging from 0.37 to 1.26 kg COD/m3.d. It was observed that steady sloughing of biofilm occurs within the SAFF reactor all the times and average concentration of sloughed biomass in the effluent was 26 mg/L. The COD and BOD removal efficiencies varied between 85 and 89% and 86 to 94%, respectively. The kinetic studies demonstrated that SAFF reactor followed Stover–Kincannon and Grau models, with high correlation coefficients (R2) of 0.9977 and 0.9916, respectively. Thus, the values of kinetic coefficients such as maximum substrate utilization rate, Umax = 64.1 g/(L.d); saturation value constant, KB = 72.31 g/(L.d) and Grau second-order substrate removal rate constant, Ks = 2.44 day−1 can be useful to develop and design large scale SAFF reactors. Finally, the study reveals that the optimum range for OLR can vary within 0.68–0.94 kg COD/m3.d.


RSC Advances ◽  
2018 ◽  
Vol 8 (17) ◽  
pp. 9320-9326
Author(s):  
Q. Y. Yang ◽  
H. L. Zhou ◽  
M. T. Xie ◽  
P. P. Ma ◽  
Z. S. Zhu ◽  
...  

The combustion process of GOA, and the specific surface area and pore size distribution of P-RGO are shown in the images.


2014 ◽  
Vol 633-634 ◽  
pp. 451-454
Author(s):  
Quan Xiao Liu ◽  
Dan Xi Li

SEM and Automated Surface Area & Pore Size Analyzer were used to characterize surface morphology and specific surface area and the pore size distribution of fibers. The results showed that specific surface area and pore size distribution increase after ultrasonication. The ash content of the composites of ultrasonic treated fiber is larger than the untreated fiber, and the magnetic properties show a good superparamagnetic behavior.


2010 ◽  
Vol 92 ◽  
pp. 163-169
Author(s):  
Hong Xia Qiao ◽  
Zhi Qiang Wei ◽  
Ming Ru Zhou ◽  
Zhong Mao He

Copper nanoparticles were successfully prepared in large scales by means of anodic arc discharging plasma method in inert atmosphere. The particle size, specific surface area, crystal structure and morphology of the samples were characterized by X-ray diffraction (XRD), BET equation, transmission electron microscopy (TEM) and the corresponding selected area electron diffraction (SAED). The experiment results indicate that the crystal structure of the samples is fcc structure as same as that of the bulk materials. The specific surface area is is 11 m2/g, with the particle size distribution ranging from 30 to 90 nm, the average particle size about 67nm obtained from TEM and confirmed from XRD and BET results. The nanoparticles have uniform size, higher purity, narrow size distribution and spherical shape can be prepared by this convenient and effective method.


Sign in / Sign up

Export Citation Format

Share Document