scholarly journals Application of the Mathematical Simulation Methods for the Assessment of the Wastewater Treatment Plant Operation Work Reliability

Water ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 873 ◽  
Author(s):  
Dariusz Młyński ◽  
Piotr Bugajski ◽  
Anna Młyńska

The aim of the present work was the modeling of the wastewater treatment plant operation work using Monte Carlo method and different random variables probability distributions modeling. The analysis includes the following pollutants indicators; BOD5 (Biochemical Oxygen Demand), CODCr (Chemical Oxygen Demand), Total Suspended Solids (SSt), Total Nitrogen (TN), and Total Phosphorus (TP). The Anderson–Darling (A–D) test was used for the assessment of theoretical and empirical distributions compatibility. The selection of the best-fitting statistical distributions was performed using peak-weighted root mean square (PWRMSE) parameter. Based on the performed calculations, it was stated that pollutants indicators in treated sewage were characterized by a significant variability. Obtained results indicate that the best-fitting pollutants indicators statistical distribution is Gauss Mixed Model (GMM) function. The results of the Monte Carlo simulation method confirmed that some problems related to the organic and biogenic pollutants reduction may be observed in the Wastewater Treatment Plant, in Jaworzno.

2008 ◽  
Vol 57 (8) ◽  
pp. 1287-1293 ◽  
Author(s):  
A. Jobbágy ◽  
G. M. Tardy ◽  
Gy. Palkó ◽  
A. Benáková ◽  
O. Krhutková ◽  
...  

The purpose of the experiments was to increase the rate of activated sludge denitrification in the combined biological treatment system of the Southpest Wastewater Treatment Plant in order to gain savings in cost and energy and improve process efficiency. Initial profile measurements revealed excess denitrification capacity of the preclarified wastewater. As a consequence, flow of nitrification filter effluent recirculated to the anoxic activated sludge basins was increased from 23,000 m3 d−1 to 42,288 m3 d−1 at an average preclarified influent flow of 64,843 m3 d−1, Both simulation studies and microbiological investigations suggested that activated sludge nitrification, achieved despite the low SRT (2–3 days), was initiated by the backseeding from the nitrification filters and facilitated by the decreased oxygen demand of the influent organics used for denitrification. With the improved activated sludge denitrification, methanol demand could be decreased to about half of the initial value. With the increased efficiency of the activated sludge pre-denitrification, plant effluent COD levels decreased from 40–70 mg l−1 to < 30–45 mg l−1 due to the decreased likelihood of methanol overdosing in the denitrification filter


2012 ◽  
Vol 7 (1) ◽  
Author(s):  
S. S. Fatima ◽  
S. Jamal Khan

In this study, the performance of wastewater treatment plant located at sector I-9 Islamabad, Pakistan, was evaluated. This full scale domestic wastewater treatment plant is based on conventional activated sludge process. The parameters which were monitored regularly included total suspended solids (TSS), mixed liquor suspended solids (MLSS), mixed liquor volatile suspended solids (MLVSS), biological oxygen demand (BOD), and chemical oxygen demand (COD). It was found that the biological degradation efficiency of the plant was below the desired levels in terms of COD and BOD. Also the plant operators were not maintaining consistent sludge retention time (SRT). Abrupt discharge of MLSS through the Surplus Activated sludge (SAS) pump was the main reason for the low MLSS in the aeration tank and consequently low treatment performance. In this study the SRT was optimized based on desired MLSS concentration between 3,000–3,500 mg/L and required performance in terms of BOD, COD and TSS. This study revealed that SRT is a very important operational parameter and its knowledge and correct implementation by the plant operators should be mandatory.


2021 ◽  
Vol 221 ◽  
pp. 31-40
Author(s):  
A.S. Mubarak ◽  
Parvaneh Esmaili ◽  
Z.S. Ameen ◽  
R.A. Abdulkadir ◽  
M.S. Gaya ◽  
...  

2019 ◽  
Vol 6 (1) ◽  
pp. 16-20
Author(s):  
Ali Akbar Rahmani Sarmazdeh ◽  
Mostafa Leili

This research mainly aimed to investigate phosphorus removal from stabilization pond effluent by using anionic resins in the continuous flow mode of operation due to high amounts of phosphorus in the wastewater treatment plant effluent of Kaboodrahang, western Iran, as well as the violation from a prescribed effluent standard to discharge receiving the surface waters. For this purpose, the pilot was made of a plexiglass cylinder and other equipment such as pump and other accessories, as well as Purolite A-100 resin. The reactor effects on the desired study parameters were assessed in two warm and cold seasons. The results showed that the phosphorus concentrations reduced from 7-10 mg/L to 4-7 mg/L and the rate of phosphorus removal was higher in the hot season compared to the cold season. Moreover, the optimum temperature and pH were obtained 21ºC and 8.5, respectively. The mean inlet biological oxygen demand (BOD) was 150 mg/L for both warm and cold seasons, where the highest removal rate of 17% was obtained in the cold season. The mean chemical oxygen demand concentration of the pilot was 250 mg/L for both seasons, and the highest removal rate was observed in the cold season with an efficiency of 18%. Regarding the total suspended solids with the mean inlet of 230 mg/L, the highest removal efficiency was obtained 6% in the warm season.


Sign in / Sign up

Export Citation Format

Share Document