scholarly journals Projected Rainfall Erosivity Over Central Asia Based on CMIP5 Climate Models

Water ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 897 ◽  
Author(s):  
Duulatov ◽  
Chen ◽  
Amanambu ◽  
Ochege ◽  
Orozbaev ◽  
...  

Climate change-induced precipitation variability is the leading cause of rainfall erosivity that leads to excessive soil losses in most countries of the world. In this paper, four global climate models (GCMs) were used to characterize the spatiotemporal prediction of rainfall erosivity and assess the effect of variations of rainfall erosivity in Central Asia. The GCMs (BCCCSM1-1, IPSLCM5BLR, MIROC5, and MPIESMLR) were statistically downscaled using the delta method under Representative Concentration Pathways (RCPs) 2.6 and 8.5 for two time periods: “Near” and “Far” future (2030s and 2070s). These GCMs data were used to estimate rainfall erosivity and its projected changes over Central Asia. WorldClim data was used as the present baseline precipitation scenario for the study area. The rainfall erosivity (R) factor of the Revised Universal Soil Loss Equation (RUSLE) was used to determine rainfall erosivity. The results show an increase in the future periods of the annual rainfall erosivity compared to the baseline. For all GCMs, with an average change in rainfall erosivity of about 5.6% (424.49 MJ mm ha−1 h−1 year−1) in 2030s and 9.6% (440.57 MJ mm ha−1 h−1 year−1) in 2070s as compared to the baseline of 402 MJ mm ha−1 h−1 year−1. The magnitude of the change varies with the GCMs, with the largest change being 26.6% (508.85 MJ mm ha−1 h−1 year−1), occurring in the MIROC-5 RCP8.5 scenario in the 2070s. Although annual rainfall erosivity shows a steady increase, IPSLCM5ALR (both RCPs and periods) shows a decrease in the average erosivity. Higher rainfall amounts were the prime causes of increasing spatial-temporal rainfall erosivity.

2019 ◽  
Vol 32 (19) ◽  
pp. 6467-6490 ◽  
Author(s):  
Kimmo Ruosteenoja ◽  
Timo Vihma ◽  
Ari Venäläinen

Abstract Future changes in geostrophic winds over Europe and the North Atlantic region were studied utilizing output data from 21 CMIP5 global climate models (GCMs). Changes in temporal means, extremes, and the joint distribution of speed and direction were considered. In concordance with previous research, the time mean and extreme scalar wind speeds do not change pronouncedly in response to the projected climate change; some degree of weakening occurs in the majority of the domain. Nevertheless, substantial changes in high wind speeds are identified when studying the geostrophic winds from different directions separately. In particular, in northern Europe in autumn and in parts of northwestern Europe in winter, the frequency of strong westerly winds is projected to increase by up to 50%. Concurrently, easterly winds become less common. In addition, we evaluated the potential of the GCMs to simulate changes in the near-surface true wind speeds. In ocean areas, changes in the true and geostrophic winds are mainly consistent and the emerging differences can be explained (e.g., by the retreat of Arctic sea ice). Conversely, in several GCMs the continental wind speed response proved to be predominantly determined by fairly arbitrary changes in the surface properties rather than by changes in the atmospheric circulation. Accordingly, true wind projections derived directly from the model output should be treated with caution since they do not necessarily reflect the actual atmospheric response to global warming.


2021 ◽  
Vol 34 (2) ◽  
pp. 509-525
Author(s):  
David P. Rowell ◽  
Rory G. J. Fitzpatrick ◽  
Lawrence S. Jackson ◽  
Grace Redmond

AbstractProjected changes in the intensity of severe rain events over the North African Sahel—falling from large mesoscale convective systems—cannot be directly assessed from global climate models due to their inadequate resolution and parameterization of convection. Instead, the large-scale atmospheric drivers of these storms must be analyzed. Here we study changes in meridional lower-tropospheric temperature gradient across the Sahel (ΔTGrad), which affect storm development via zonal vertical wind shear and Saharan air layer characteristics. Projected changes in ΔTGrad vary substantially among models, adversely affecting planning decisions that need to be resilient to adverse risks, such as increased flooding. This study seeks to understand the causes of these projection uncertainties and finds three key drivers. The first is intermodel variability in remote warming, which has strongest impact on the eastern Sahel, decaying toward the west. Second, and most important, a warming–advection–circulation feedback in a narrow band along the southern Sahara varies in strength between models. Third, variations in southern Saharan evaporative anomalies weakly affect ΔTGrad, although for an outlier model these are sufficiently substantive to reduce warming here to below that of the global mean. Together these uncertain mechanisms lead to uncertain southern Saharan/northern Sahelian warming, causing the bulk of large intermodel variations in ΔTGrad. In the southern Sahel, a local negative feedback limits the contribution to uncertainties in ΔTGrad. This new knowledge of ΔTGrad projection uncertainties provides understanding that can be used, in combination with further research, to constrain projections of severe Sahelian storm activity.


2010 ◽  
Vol 23 (2) ◽  
pp. 440-454 ◽  
Author(s):  
Kevin E. Trenberth ◽  
John T. Fasullo

Abstract The energy budget of the modern-day Southern Hemisphere is poorly simulated in both state-of-the-art reanalyses and coupled global climate models. The ocean-dominated Southern Hemisphere has low surface reflectivity and therefore its albedo is particularly sensitive to cloud cover. In modern-day climates, mainly because of systematic deficiencies in cloud and albedo at mid- and high latitudes, too much solar radiation enters the ocean. Along with too little radiation absorbed at lower latitudes because of clouds that are too bright, unrealistically weak poleward transports of energy by both the ocean and atmosphere are generally simulated in the Southern Hemisphere. This implies too little baroclinic eddy development and deficient activity in storm tracks. However, projections into the future by coupled climate models indicate that the Southern Ocean features a robust and unique increase in albedo, related to clouds, in association with an intensification and poleward shift in storm tracks that is not observed at any other latitude. Such an increase in cloud may be untenable in nature, as it is likely precluded by the present-day ubiquitous cloud cover that models fail to capture. There is also a remarkably strong relationship between the projected changes in clouds and the simulated current-day cloud errors. The model equilibrium climate sensitivity is also significantly negatively correlated with the Southern Hemisphere energy errors, and only the more sensitive models are in the range of observations. As a result, questions loom large about how the Southern Hemisphere will actually change as global warming progresses, and a better simulation of the modern-day climate is an essential first step.


2014 ◽  
Vol 27 (20) ◽  
pp. 7529-7549 ◽  
Author(s):  
Toby R. Ault ◽  
Julia E. Cole ◽  
Jonathan T. Overpeck ◽  
Gregory T. Pederson ◽  
David M. Meko

Abstract Projected changes in global rainfall patterns will likely alter water supplies and ecosystems in semiarid regions during the coming century. Instrumental and paleoclimate data indicate that natural hydroclimate fluctuations tend to be more energetic at low (multidecadal to multicentury) than at high (interannual) frequencies. State-of-the-art global climate models do not capture this characteristic of hydroclimate variability, suggesting that the models underestimate the risk of future persistent droughts. Methods are developed here for assessing the risk of such events in the coming century using climate model projections as well as observational (paleoclimate) information. Where instrumental and paleoclimate data are reliable, these methods may provide a more complete view of prolonged drought risk. In the U.S. Southwest, for instance, state-of-the-art climate model projections suggest the risk of a decade-scale megadrought in the coming century is less than 50%; the analysis herein suggests that the risk is at least 80%, and may be higher than 90% in certain areas. The likelihood of longer-lived events (>35 yr) is between 20% and 50%, and the risk of an unprecedented 50-yr megadrought is nonnegligible under the most severe warming scenario (5%–10%). These findings are important to consider as adaptation and mitigation strategies are developed to cope with regional impacts of climate change, where population growth is high and multidecadal megadrought—worse than anything seen during the last 2000 years—would pose unprecedented challenges to water resources in the region.


2010 ◽  
Vol 2 (2) ◽  
pp. 148-167 ◽  
Author(s):  
Kirsti Jylhä ◽  
Heikki Tuomenvirta ◽  
Kimmo Ruosteenoja ◽  
Hanna Niemi-Hugaerts ◽  
Krista Keisu ◽  
...  

Abstract A Web site questionnaire survey in Finland suggested that maps illustrating projected shifts of Köppen climatic zones are an effective visualization tool for disseminating climate change information. The climate classification is based on seasonal cycles of monthly-mean temperature and precipitation, and it divides Europe and its adjacent land areas into tundra, boreal, temperate, and dry climate types. Projections of future changes in the climatic zones were composed using multimodel mean projections based on simulations performed with 19 global climate models. The projections imply that, depending on the greenhouse gas scenarios, about half or possibly even two-thirds of the study domain will be affected by shifts toward a warmer or drier climate type during this century. The projected changes within the next few decades are chiefly located near regions where shifts in the borders of the zones have already occurred during the period 1950–2006. The questionnaire survey indicated that the information regarding the shifting climatic zones as disseminated by the maps was generally interpreted correctly, with the average percentage of correct answers being 86%. Additional examples of the use of the climatic zones to communicate climate change information to the public are included.


2012 ◽  
Vol 109 (3-4) ◽  
pp. 345-360 ◽  
Author(s):  
Lu Liu ◽  
Yang Hong ◽  
James E. Hocker ◽  
Mark A. Shafer ◽  
Lynne M. Carter ◽  
...  

2020 ◽  
Author(s):  
Isabella Velicogna ◽  
Mohajerani Yara ◽  
Enrico Ciraci ◽  
Felix Landerer ◽  
David Wiese

<p>The GRACE missions have changed the way that we measure mass changes of ice sheets, glaciers and ice caps, with quantied uncertainties that factor processing errors, atmospheric and oceanic corrections, and removal of glacial isostatic adjustment (GIA). We present GRACE/GRACE-FO estimates of mass balance over the Greenland and Antarctic Ice Sheets and the World’s glaciers and ice caps (GIC). The data gap between missions is filled with GRACE-calibrated results from the input-output method for ice sheets and surface mass balance (SMB) reconstructions from regional atmospheric climate models and MERRA-2 reanalysis data for the glaciers and ice caps. Over Greenland, we report low losses during the cold years of 2017-2018 followed by record melt in 2019 and an onset of rapid melt for 2020. As warm air and ocean masses get blocked over Greenland more frequently because of interactions between the wobbling jet stream and topography, we observe more high melt events in this decade than recorded in prior centuries. In Antarctica, the ongoing rapid loss in West Antarctica dominates the mass balance, but we observe a steady increase in snowfall in the Atlantic sector of East Antarctica. The exercise provides a mass balance record that can be continuously improved with better corrections and improved processing, with reduced errors, so that we can provide better constraints for ice sheet models in charge of sea level projections and improve the validation of various Earth system models and global climate models.</p>


Author(s):  
Iselin Medhaug

Instrumental measurements of surface temperatures are available back to around 1850. Based on these, we can estimate the annual mean global temperature. Global temperatures are clearly rising, mainly because of increasing amounts of greenhouse gases, like for example CO2 and methane, from use of coal, oil and gas and deforestation. Since 1998, a paradox seems to have appeared, where the global temperature has stopped rising even with a steady increase in release of greenhouse gases into the atmosphere. This period has popularly been called the “global warming hiatus” or “paused warming”, and it has been used to cast doubt on whether man made global warming is really happening, or that it can be called off. By using 17 different global climate models, and also available temperature observations, we have tried to figure out why the temperature increase might stop, what is actually happening, whether it has happened before or it may happen again in a warmer world, and which regions have higher chances of experiencing “hiatus” periods lasting for a decade or so.


Sign in / Sign up

Export Citation Format

Share Document