scholarly journals Precipitation Estimation Methods in Continuous, Distributed Urban Hydrologic Modeling

Water ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 1340
Author(s):  
Woodson ◽  
Adams ◽  
Dymond

Quantitative precipitation estimation (QPE) remains a key area of uncertainty in hydrological modeling and prediction, particularly in small, urban watersheds, which respond rapidly to precipitation and can experience significant spatial variability in rainfall fields. Few studies have compared QPE methods in small, urban watersheds, and studies that have examined this topic only compared model results on an event basis using a small number of storms. This study sought to compare the efficacy of multiple QPE methods when simulating discharge in a small, urban watershed on a continuous basis using an operational hydrologic model and QPE forcings. The research distributed hydrologic model (RDHM) was used to model a basin in Roanoke, Virginia, USA, forced with QPEs from four methods: mean field bias (MFB) correction of radar data, kriging of rain gauge data, uncorrected radar data, and a basin-uniform estimate from a single gauge inside the watershed. Based on comparisons between simulated and observed discharge at the basin outlet for a six-month period in 2018, simulations forced with the uncorrected radar QPE had the highest accuracy, as measured by root mean squared error (RMSE) and peak flow relative error, despite systematic underprediction of the mean areal precipitation (MAP). Simulations forced with MFB-corrected radar data consistently and significantly overpredicted discharge, but had the highest accuracy in predicting the timing of peak flows.


2011 ◽  
Vol 12 (6) ◽  
pp. 1414-1431 ◽  
Author(s):  
David Kitzmiller ◽  
Suzanne Van Cooten ◽  
Feng Ding ◽  
Kenneth Howard ◽  
Carrie Langston ◽  
...  

Abstract This study investigates evolving methodologies for radar and merged gauge–radar quantitative precipitation estimation (QPE) to determine their influence on the flow predictions of a distributed hydrologic model. These methods include the National Mosaic and QPE algorithm package (NMQ), under development at the National Severe Storms Laboratory (NSSL), and the Multisensor Precipitation Estimator (MPE) and High-Resolution Precipitation Estimator (HPE) suites currently operational at National Weather Service (NWS) field offices. The goal of the study is to determine which combination of algorithm features offers the greatest benefit toward operational hydrologic forecasting. These features include automated radar quality control, automated Z–R selection, brightband identification, bias correction, multiple radar data compositing, and gauge–radar merging, which all differ between NMQ and MPE–HPE. To examine the spatial and temporal characteristics of the precipitation fields produced by each of the QPE methodologies, high-resolution (4 km and hourly) gridded precipitation estimates were derived by each algorithm suite for three major precipitation events between 2003 and 2006 over subcatchments within the Tar–Pamlico River basin of North Carolina. The results indicate that the NMQ radar-only algorithm suite consistently yielded closer agreement with reference rain gauge reports than the corresponding HPE radar-only estimates did. Similarly, the NMQ radar-only QPE input generally yielded hydrologic simulations that were closer to observations at multiple stream gauging points. These findings indicate that the combination of Z–R selection and freezing-level identification algorithms within NMQ, but not incorporated within MPE and HPE, would have an appreciable positive impact on hydrologic simulations. There were relatively small differences between NMQ and HPE gauge–radar estimates in terms of accuracy and impacts on hydrologic simulations, most likely due to the large influence of the input rain gauge information.



2021 ◽  
Author(s):  
Thanh Thi Luong ◽  
Ivan Vorobevskii ◽  
Judith Pöschmann ◽  
Rico Kronenberg

<p>Water balance estimation/modeling is highly dependent on good-quality precipitation data and often lacks enough spatial information about it. Quantitative precipitation estimation (QPE) using radar data is recognized to have a good potential to significantly enhance the spatial depiction of precipitation compared to conventional rain gauge-based methods. However, precipitation measurements are often underestimated by wind drift or funnel evaporation, so that a correction such as Richter’s method is required before the data can be applied in the model. In this study, the Richter correction is applied for the first time to a radar-based QPE, namely RADKLIM-RW, to model water balance in ten selected catchments in Saxony, Germany. The modelled water balance components for the period 2001-2017 were evaluated by means of comparison of radar- and gauge-based precipitation inputs. The results showed that RADKLIM-RW was able to produce reliable simulations of discharge and water balance (KGE = 0.56 and 0.71 on the daily and monthly scales respectively). Application of the Richter correction improved the model performance by 5.5% and 8.9 % (for rain gauge-based and RADKLIM precipitation respectively). The study concluded that radar data as precipitation input to (pseudo)distributed hydrologic model shows immense potential to improve water balance simulations.</p><p><strong>Hightlights</strong>:</p><ul><li>Comparison of precipitation derived from sensor networks and radar imagery for small catchments</li> <li>Evaluation of potential application of radar precipitation in water balance simulation at regional scale</li> <li>Effect of wind correction (“Richter” correction) on radar precipitation products</li> <li>Evaluating corrected precipitation on water balance processes</li> </ul><p><strong>Keywords</strong>: HRU, radar climatology, RADKLIM RW (RADOLAN), Richter correction, Open sensor network, water balance simulation, BROOK90</p>



2019 ◽  
Vol 20 (12) ◽  
pp. 2347-2365 ◽  
Author(s):  
Ali Jozaghi ◽  
Mohammad Nabatian ◽  
Seongjin Noh ◽  
Dong-Jun Seo ◽  
Lin Tang ◽  
...  

Abstract We describe and evaluate adaptive conditional bias–penalized cokriging (CBPCK) for improved multisensor precipitation estimation using rain gauge data and remotely sensed quantitative precipitation estimates (QPE). The remotely sensed QPEs used are radar-only and radar–satellite-fused estimates. For comparative evaluation, true validation is carried out over the continental United States (CONUS) for 13–30 September 2015 and 7–9 October 2016. The hourly gauge data, radar-only QPE, and satellite QPE used are from the Hydrometeorological Automated Data System, Multi-Radar Multi-Sensor System, and Self-Calibrating Multivariate Precipitation Retrieval (SCaMPR), respectively. For radar–satellite fusion, conditional bias–penalized Fisher estimation is used. The reference merging technique compared is ordinary cokriging (OCK) used in the National Weather Service Multisensor Precipitation Estimator. It is shown that, beyond the reduction due to mean field bias (MFB) correction, both OCK and adaptive CBPCK additionally reduce the unconditional root-mean-square error (RMSE) of radar-only QPE by 9%–16% over the CONUS for the two periods, and that adaptive CBPCK is superior to OCK for estimation of hourly amounts exceeding 1 mm. When fused with the MFB-corrected radar QPE, the MFB-corrected SCaMPR QPE for September 2015 reduces the unconditional RMSE of the MFB-corrected radar by 4% and 6% over the entire and western half of the CONUS, respectively, but is inferior to the MFB-corrected radar for estimation of hourly amounts exceeding 7 mm. Adaptive CBPCK should hence be favored over OCK for estimation of significant amounts of precipitation despite larger computational cost, and the SCaMPR QPE should be used selectively in multisensor QPE.



Atmosphere ◽  
2019 ◽  
Vol 10 (6) ◽  
pp. 306 ◽  
Author(s):  
Dominique Faure ◽  
Guy Delrieu ◽  
Nicolas Gaussiat

In the French Alps the quality of the radar Quantitative Precipitation Estimation (QPE) is limited by the topography and the vertical structure of precipitation. A previous study realized in all the French Alps, has shown a general bias between values of the national radar QPE composite and the rain gauge measurements: a radar QPE over-estimation at low altitude (+20% at 200 m a.s.l.), and an increasing underestimation at high altitudes (until −40% at 2100 m a.s.l.). This trend has been linked to altitudinal gradients of precipitation observed at ground level. This paper analyzes relative altitudinal gradients of precipitation estimated with rain gauges measurements in 2016 for three massifs around Grenoble, and for different temporal accumulations (yearly, seasonal, monthly, daily). Comparisons of radar and rain gauge accumulations confirm the bias previously observed. The parts of the current radar data processing affecting the bias value are pointed out. The analysis shows a coherency between the relative gradient values estimated at the different temporal accumulations. Vertical profiles of precipitation detected by a research radar installed at the bottom of the valley also show how the wide horizontal variability of precipitation inside the valley can affect the gradient estimation.



2019 ◽  
Vol 11 (21) ◽  
pp. 2463
Author(s):  
Arthur Moraux ◽  
Steven Dewitte ◽  
Bruno Cornelis ◽  
Adrian Munteanu

This paper proposes a multimodal and multi-task deep-learning model for instantaneous precipitation rate estimation. Using both thermal infrared satellite radiometer and automatic rain gauge measurements as input, our encoder–decoder convolutional neural network performs a multiscale analysis of these two modalities to estimate simultaneously the rainfall probability and the precipitation rate value. Precipitating pixels are detected with a Probability Of Detection (POD) of 0.75 and a False Alarm Ratio (FAR) of 0.3. Instantaneous precipitation rate is estimated with a Root Mean Squared Error (RMSE) of 1.6 mm/h.



2012 ◽  
Vol 13 (1) ◽  
pp. 338-350 ◽  
Author(s):  
Menberu M. Bitew ◽  
Mekonnen Gebremichael ◽  
Lula T. Ghebremichael ◽  
Yared A. Bayissa

Abstract This study focuses on evaluating four widely used global high-resolution satellite rainfall products [the Climate Prediction Center’s morphing technique (CMORPH) product, the Tropical Rainfall Measuring Mission (TRMM) Multisatellite Precipitation Analysis (TMPA) near-real-time product (3B42RT), the TMPA method post-real-time research version product (3B42), and the Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks (PERSIANN) product] with a spatial resolution of 0.25° and temporal resolution of 3 h through their streamflow simulations in the Soil and Water Assessment Tool (SWAT) hydrologic model of a 299-km2 mountainous watershed in Ethiopia. Results show significant biases in the satellite rainfall estimates. The 3B42RT and CMORPH products perform better than the 3B42 and PERSIANN. The predictive ability of each of the satellite rainfall was examined using a SWAT model calibrated in two different approaches: with rain gauge rainfall as input, and with each of the satellite rainfall products as input. Significant improvements in model streamflow simulations are obtained when the model is calibrated with input-specific rainfall data than with rain gauge data. Calibrating SWAT with satellite rainfall estimates results in curve number values that are by far higher than the standard tabulated values, and therefore caution must be exercised when using standard tabulated parameter values with satellite rainfall inputs. The study also reveals that bias correction of satellite rainfall estimates significantly improves the model simulations. The best-performing model simulations based on satellite rainfall inputs are obtained after bias correction and model recalibration.



MAUSAM ◽  
2021 ◽  
Vol 65 (1) ◽  
pp. 49-56
Author(s):  
S.JOSEPHINE VANAJA ◽  
B.V. MUDGAL ◽  
S.B. THAMPI

Precipitation is a significant input for hydrologic models; so, it needs to be quantified precisely. The measurement with rain gauges gives the rainfall at a particular location, whereas the radar obtains instantaneous snapshots of electromagnetic backscatter from rain volumes that are then converted into rainfall via algorithms. It has been proved that the radar measurement of areal rainfall can outperform rain gauge network measurements, especially in remote areas where rain gauges are sparse, and remotely sensed satellite rainfall data are too inaccurate. The research focuses on a technique to improve rainfall-runoff modeling based on radar derived rainfall data for Adyar watershed, Chennai, India. A hydrologic model called ‘Hydrologic Engineering Center-Hydrologic Modeling System (HEC-HMS)’ is used for simulating rainfall-runoff processes. CARTOSAT 30 m DEM is used for watershed delineation using HEC-GeoHMS. The Adyar watershed is within 100 km radius circle from the Doppler Weather Radar station, hence it has been chosen as the study area. The cyclonic storm Jal event from 4-8 November, 2010 period is selected for the study. The data for this period are collected from the Statistical Department, and the Cyclone Detection Radar Centre, Chennai, India. The results show that the runoff is over predicted using calibrated Doppler radar data in comparison with the point rainfall from rain gauge stations.



Atmosphere ◽  
2018 ◽  
Vol 9 (12) ◽  
pp. 496 ◽  
Author(s):  
Ibrahim Seck ◽  
Joël Van Baelen

Optimal Quantitative Precipitation Estimation (QPE) of rainfall is crucial to the accuracy of hydrological models, especially over urban catchments. Small-to-medium size towns are often equipped with sparse rain gauge networks that struggle to capture the variability in rainfall over high spatiotemporal resolutions. X-band Local Area Weather Radars (LAWRs) provide a cost-effective solution to meet this challenge. The Clermont Auvergne metropolis monitors precipitation through a network of 13 rain gauges with a temporal resolution of 5 min. 5 additional rain gauges with a 6-minute temporal resolution are available in the region, and are operated by the national weather service Météo-France. The LaMP (Laboratoire de Météorologie Physique) laboratory’s X-band single-polarized weather radar monitors precipitation as well in the region. In this study, three geostatistical interpolation techniques—Ordinary kriging (OK), which was applied to rain gauge data with a variogram inferred from radar data, conditional merging (CM), and kriging with an external drift (KED)—are evaluated and compared through cross-validation. The performance of the inverse distance weighting interpolation technique (IDW), which was applied to rain gauge data only, was investigated as well, in order to evaluate the effect of incorporating radar data on the QPE’s quality. The dataset is comprised of rainfall events that occurred during the seasons of summer 2013 and winter 2015, and is exploited at three temporal resolutions: 5, 30, and 60 min. The investigation of the interpolation techniques performances is carried out for both seasons and for the three temporal resolutions using raw radar data, radar data corrected from attenuation, and the mean field bias, successively. The superiority of the geostatistical techniques compared to the inverse distance weighting method was verified with an average relative improvement of 54% and 31% in terms of bias reduction for kriging with an external drift and conditional merging, respectively (cross-validation). KED and OK performed similarly well, while CM lagged behind in terms of point measurement QPE accuracy, but was the best method in terms of preserving the observations’ variance. The correction schemes had mixed effects on the multivariate geostatistical methods. Indeed, while the attenuation correction improved KED across the board, the mean field bias correction effects were marginal. Both radar data correction schemes resulted in a decrease of the ability of CM to preserve the observations variance, while slightly improving its point measurement QPE accuracy.



2017 ◽  
Vol 21 (7) ◽  
pp. 3597-3618 ◽  
Author(s):  
Diana Fuentes-Andino ◽  
Keith Beven ◽  
Sven Halldin ◽  
Chong-Yu Xu ◽  
José Eduardo Reynolds ◽  
...  

Abstract. Studies for the prevention and mitigation of floods require information on discharge and extent of inundation, commonly unavailable or uncertain, especially during extreme events. This study was initiated by the devastating flood in Tegucigalpa, the capital of Honduras, when Hurricane Mitch struck the city. In this study we hypothesized that it is possible to estimate, in a trustworthy way considering large data uncertainties, this extreme 1998 flood discharge and the extent of the inundations that followed from a combination of models and post-event measured data. Post-event data collected in 2000 and 2001 were used to estimate discharge peaks, times of peak, and high-water marks. These data were used in combination with rain data from two gauges to drive and constrain a combination of well-known modelling tools: TOPMODEL, Muskingum–Cunge–Todini routing, and the LISFLOOD-FP hydraulic model. Simulations were performed within the generalized likelihood uncertainty estimation (GLUE) uncertainty-analysis framework. The model combination predicted peak discharge, times of peaks, and more than 90 % of the observed high-water marks within the uncertainty bounds of the evaluation data. This allowed an inundation likelihood map to be produced. Observed high-water marks could not be reproduced at a few locations on the floodplain. Identifications of these locations are useful to improve model set-up, model structure, or post-event data-estimation methods. Rainfall data were of central importance in simulating the times of peak and results would be improved by a better spatial assessment of rainfall, e.g. from radar data or a denser rain-gauge network. Our study demonstrated that it was possible, considering the uncertainty in the post-event data, to reasonably reproduce the extreme Mitch flood in Tegucigalpa in spite of no hydrometric gauging during the event. The method proposed here can be part of a Bayesian framework in which more events can be added into the analysis as they become available.



Sign in / Sign up

Export Citation Format

Share Document