3-hourly quantitative precipitation estimation over Central and Northern Europe from rain gauge and radar data

2009 ◽  
Vol 94 (4) ◽  
pp. 544-554 ◽  
Author(s):  
Franz Rubel ◽  
Katharina Brugger
Atmosphere ◽  
2019 ◽  
Vol 10 (6) ◽  
pp. 306 ◽  
Author(s):  
Dominique Faure ◽  
Guy Delrieu ◽  
Nicolas Gaussiat

In the French Alps the quality of the radar Quantitative Precipitation Estimation (QPE) is limited by the topography and the vertical structure of precipitation. A previous study realized in all the French Alps, has shown a general bias between values of the national radar QPE composite and the rain gauge measurements: a radar QPE over-estimation at low altitude (+20% at 200 m a.s.l.), and an increasing underestimation at high altitudes (until −40% at 2100 m a.s.l.). This trend has been linked to altitudinal gradients of precipitation observed at ground level. This paper analyzes relative altitudinal gradients of precipitation estimated with rain gauges measurements in 2016 for three massifs around Grenoble, and for different temporal accumulations (yearly, seasonal, monthly, daily). Comparisons of radar and rain gauge accumulations confirm the bias previously observed. The parts of the current radar data processing affecting the bias value are pointed out. The analysis shows a coherency between the relative gradient values estimated at the different temporal accumulations. Vertical profiles of precipitation detected by a research radar installed at the bottom of the valley also show how the wide horizontal variability of precipitation inside the valley can affect the gradient estimation.


2017 ◽  
Vol 18 (12) ◽  
pp. 3199-3215 ◽  
Author(s):  
Leonardo Porcacchia ◽  
P. E. Kirstetter ◽  
J. J. Gourley ◽  
V. Maggioni ◽  
B. L. Cheong ◽  
...  

Abstract Accurate quantitative precipitation estimation over mountainous basins is of great importance because of their susceptibility to natural hazards. It is generally difficult to obtain reliable precipitation information over complex areas because of the scarce coverage of ground observations, the limited coverage from operational radar networks, and the high elevation of the study sites. Warm-rain processes have been observed in several flash flood events in complex terrain regions. While they lead to high rainfall rates from precipitation growth due to collision–coalescence of droplets in the cloud liquid layer, their characteristics are often difficult to identify. X-band mobile dual-polarization radars located in complex terrain areas provide fundamental information at high-resolution and at low atmospheric levels. This study analyzes a dataset collected in North Carolina during the 2014 Integrated Precipitation and Hydrology Experiment (IPHEx) field campaign over a mountainous basin where the NOAA/National Severe Storm Laboratory’s X-band polarimetric radar (NOXP) was deployed. Polarimetric variables are used to isolate collision–coalescence microphysical processes. This work lays the basis for classification algorithms able to identify coalescence-dominant precipitation by merging the information coming from polarimetric radar measurements. The sensitivity of the proposed classification scheme is tested with different rainfall-rate retrieval algorithms and compared to rain gauge observations. Results show the inadequacy of rainfall estimates when coalescence identification is not taken into account. This work highlights the necessity of a correct classification of collision–coalescence processes, which can lead to improvements in quantitative precipitation estimation. Future studies will aim at generalizing this scheme by making use of spaceborne radar data.


2016 ◽  
Vol 97 (4) ◽  
pp. 621-638 ◽  
Author(s):  
Jian Zhang ◽  
Kenneth Howard ◽  
Carrie Langston ◽  
Brian Kaney ◽  
Youcun Qi ◽  
...  

Abstract Rapid advancements of computer technologies in recent years made the real-time transferring and integration of high-volume, multisource data at a centralized location a possibility. The Multi-Radar Multi-Sensor (MRMS) system recently implemented at the National Centers for Environmental Prediction demonstrates such capabilities by integrating about 180 operational weather radars from the conterminous United States and Canada into a seamless national 3D radar mosaic with very high spatial (1 km) and temporal (2 min) resolution. The radar data can be integrated with high-resolution numerical weather prediction model data, satellite data, and lightning and rain gauge observations to generate a suite of severe weather and quantitative precipitation estimation (QPE) products. This paper provides an overview of the initial operating capabilities of MRMS QPE products.


Author(s):  
Zhao Shi ◽  
Fangqiang Wei ◽  
Chandrasekar Venkatachalam

Abstract. Both of Ms8.0 Wenchuan earthquake on May 12, 2008 and Ms7.0 Lushan earth quake on April 20, 2013 occurred in Sichuan Province of China. In the earthquake affected mountainous area, a large amount of loose material caused a high occurrence of debris flow during the rainy season. In order to evaluate the rainfall Intensity–Duration (I-D) threshold of the debris flow in the earthquake-affected area, and for filling up the observational gaps caused by the relatively scarce and low altitude deployment of rain gauges in this area, raw data from two S-band China New Generation Doppler weather radar (CINRAD) were captured for six rainfall events which triggered 519 debris flows between 2012 and 2014. Due to the challenges of radar quantitative precipitation estimation (QPE) over mountainous area, a series of improving measures are considered including the hybrid scan mode, the vertical reflectivity profile (VPR) correction, the mosaic of reflectivity, a merged rainfall-reflectivity(R-Z) relationship for convective and stratiform rainfall and rainfall bias adjustment with Kalman filter (KF). For validating rainfall accumulation over complex terrains, the study areas are divided into two kinds of regions by the height threshold of 1.5 km from the ground. Three kinds of radar rainfall estimates are compared with rain gauge measurements. It is observed that the normalized mean bias (NMB) is decreased by 39 % and the fitted linear ratio between radar and rain gauge observation reaches at 0.98. Furthermore, the radar-based I-D threshold derived by the Frequentist method is I = 10.1D−0.52, and it's also found that the I-D threshold is underestimated by uncorrected raw radar data. In order to verify the impacts on observations due to spatial variation, I-D thresholds are identified from the nearest rain gauge observations and radar observations at the rain gauge locations. It is found that both kinds of observations have similar I-D threshold and likewise underestimate I-D thresholds owing to under shooting at the core of convective rainfall. It is indicated that improvement of spatial resolution and measuring accuracy of radar observation will lead to the improvement of identifying debris flow occurrence, especially for events triggered by the small-scale strong rainfall process in the study area.


2018 ◽  
Vol 18 (3) ◽  
pp. 765-780 ◽  
Author(s):  
Zhao Shi ◽  
Fangqiang Wei ◽  
Venkatachalam Chandrasekar

Abstract. Both Ms 8.0 Wenchuan earthquake on 12 May 2008 and Ms 7.0 Lushan earthquake on 20 April 2013 occurred in the province of Sichuan, China. In the earthquake-affected mountainous area, a large amount of loose material caused a high occurrence of debris flow during the rainy season. In order to evaluate the rainfall intensity–duration (I–D) threshold of the debris flow in the earthquake-affected area, and to fill up the observational gaps caused by the relatively scarce and low-altitude deployment of rain gauges in this area, raw data from two S-band China New Generation Doppler Weather Radar (CINRAD) were captured for six rainfall events that triggered 519 debris flows between 2012 and 2014. Due to the challenges of radar quantitative precipitation estimation (QPE) over mountainous areas, a series of improvement measures are considered: a hybrid scan mode, a vertical reflectivity profile (VPR) correction, a mosaic of reflectivity, a merged rainfall–reflectivity (R − Z) relationship for convective and stratiform rainfall, and rainfall bias adjustment with Kalman filter (KF). For validating rainfall accumulation over complex terrains, the study areas are divided into two kinds of regions by the height threshold of 1.5 km from the ground. Three kinds of radar rainfall estimates are compared with rain gauge measurements. It is observed that the normalized mean bias (NMB) is decreased by 39 % and the fitted linear ratio between radar and rain gauge observation reaches at 0.98. Furthermore, the radar-based I–D threshold derived by the frequentist method is I = 10.1D−0.52 and is underestimated by uncorrected raw radar data. In order to verify the impacts on observations due to spatial variation, I–D thresholds are identified from the nearest rain gauge observations and radar observations at the rain gauge locations. It is found that both kinds of observations have similar I–D thresholds and likewise underestimate I–D thresholds due to undershooting at the core of convective rainfall. It is indicated that improvement of spatial resolution and measuring accuracy of radar observation will lead to the improvement of identifying debris flow occurrence, especially for events triggered by the strong small-scale rainfall process in the study area.


2020 ◽  
Vol 5 (5) ◽  
pp. 36-50
Author(s):  
Chiho Kimpara ◽  
Michihiko Tonouchi ◽  
Bui Thi Khanh Hoa ◽  
Nguyen Viet Hung ◽  
Nguyen Minh Cuong ◽  
...  

2021 ◽  
Vol 893 (1) ◽  
pp. 012054
Author(s):  
M F Handoyo ◽  
M P Hadi ◽  
S Suprayogi

Abstract A weather radar is an active system remote sensing tool that observes precipitation indirectly. Weather radar has an advantage in estimating precipitation because it has a high spatial resolution (up to 0.5 km). Reflectivity generated by weather radar still has signal interference caused by attenuation factors. Attenuation causes the Quantitative Precipitation Estimation (QPE) by the C-band weather radar to underestimate. Therefore attenuation correction on C-band weather radar is needed to eliminate precipitation estimation errors. This study aims to apply attenuation correction to determine Quantitative Precipitation Estimation (QPE) on the c-band weather radar in Bengkulu in December 2018. Gate-by-gate method attenuation correction with Kraemer approach has applied to c-band weather radar data from the Indonesian Agency for Meteorology and Geophysics (BMKG) weather radar network Bengkulu. This method uses reflectivity as the only input. Quantitative Precipitation Estimation (QPE) has obtained by comparing weather radar-based rain estimates to 10 observation rain gauges over a month with the Z-R relation equation. Root Mean Square Error (RMSE) is used to calculate the estimation error. Weather radar data are processed using Python-based libraries Wradlib and ArcGIS 10.5. As a result, the calculation between the weather radar estimate precipitation and the observed rainfall obtained equation Z=2,65R1,3. The attenuation correction process with Kreamer's approach on the c-band weather radar has reduced error in the Qualitative Precipitation Estimation (QPE). Corrected precipitation has a smaller error value (r = 0.88; RMSE = 8.38) than the uncorrected precipitation (r = 0.83; RMSE = 11.70).


2014 ◽  
Vol 15 (5) ◽  
pp. 1778-1793 ◽  
Author(s):  
Yiwen Mei ◽  
Emmanouil N. Anagnostou ◽  
Efthymios I. Nikolopoulos ◽  
Marco Borga

Abstract Accurate quantitative precipitation estimation over mountainous basins is of great importance because of their susceptibility to hazards such as flash floods, shallow landslides, and debris flows, triggered by heavy precipitation events (HPEs). In situ observations over mountainous areas are limited, but currently available satellite precipitation products can potentially provide the precipitation estimation needed for hydrological applications. In this study, four widely used satellite-based precipitation products [Tropical Rainfall Measuring Mission (TRMM) Multisatellite Precipitation Analysis (TMPA) 3B42, version 7 (3B42-V7), and in near–real time (3B42-RT); Climate Prediction Center (CPC) morphing technique (CMORPH); and Precipitation Estimation from Remotely Sensed Imagery Using Artificial Neural Networks (PERSIANN)] are evaluated with respect to their performance in capturing the properties of HPEs over different basin scales. Evaluation is carried out over the upper Adige River basin (eastern Italian Alps) for an 8-yr period (2003–10). Basin-averaged rainfall derived from a dense rain gauge network in the region is used as a reference. Satellite precipitation error analysis is performed for warm (May–August) and cold (September–December) season months as well as for different quantile ranges of basin-averaged precipitation accumulations. Three error metrics and a score system are introduced to quantify the performances of the various satellite products. Overall, no single precipitation product can be considered ideal for detecting and quantifying HPE. Results show better consistency between gauges and the two 3B42 products, particularly during warm season months that are associated with high-intensity convective events. All satellite products are shown to have a magnitude-dependent error ranging from overestimation at low precipitation regimes to underestimation at high precipitation accumulations; this effect is more pronounced in the CMORPH and PERSIANN products.


2019 ◽  
Vol 2019 ◽  
pp. 1-17
Author(s):  
Ju-Young Shin ◽  
Yonghun Ro ◽  
Joo-Wan Cha ◽  
Kyu-Rang Kim ◽  
Jong-Chul Ha

Machine learning algorithms should be tested for use in quantitative precipitation estimation models of rain radar data in South Korea because such an application can provide a more accurate estimate of rainfall than the conventional ZR relationship-based model. The applicability of random forest, stochastic gradient boosted model, and extreme learning machine methods to quantitative precipitation estimation models was investigated using case studies with polarization radar data from Gwangdeoksan radar station. Various combinations of input variable sets were tested, and results showed that machine learning algorithms can be applied to build the quantitative precipitation estimation model of the polarization radar data in South Korea. The machine learning-based quantitative precipitation estimation models led to better performances than ZR relationship-based models, particularly for heavy rainfall events. The extreme learning machine is considered the best of the algorithms used based on evaluation criteria.


Water ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 1340
Author(s):  
Woodson ◽  
Adams ◽  
Dymond

Quantitative precipitation estimation (QPE) remains a key area of uncertainty in hydrological modeling and prediction, particularly in small, urban watersheds, which respond rapidly to precipitation and can experience significant spatial variability in rainfall fields. Few studies have compared QPE methods in small, urban watersheds, and studies that have examined this topic only compared model results on an event basis using a small number of storms. This study sought to compare the efficacy of multiple QPE methods when simulating discharge in a small, urban watershed on a continuous basis using an operational hydrologic model and QPE forcings. The research distributed hydrologic model (RDHM) was used to model a basin in Roanoke, Virginia, USA, forced with QPEs from four methods: mean field bias (MFB) correction of radar data, kriging of rain gauge data, uncorrected radar data, and a basin-uniform estimate from a single gauge inside the watershed. Based on comparisons between simulated and observed discharge at the basin outlet for a six-month period in 2018, simulations forced with the uncorrected radar QPE had the highest accuracy, as measured by root mean squared error (RMSE) and peak flow relative error, despite systematic underprediction of the mean areal precipitation (MAP). Simulations forced with MFB-corrected radar data consistently and significantly overpredicted discharge, but had the highest accuracy in predicting the timing of peak flows.


Sign in / Sign up

Export Citation Format

Share Document