scholarly journals Elementary Iodine-Doped Activated Carbon as an Oxidizing Agent for the Treatment of Arsenic-Enriched Drinking Water

Water ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 1778 ◽  
Author(s):  
Fabio Spaziani ◽  
Yuli Natori ◽  
Yoshiaki Kinase ◽  
Tomohiko Kawakami ◽  
Katsuyoshi Tatenuma

An activated carbon impregnated with elementary iodine (I2), named IodAC, characterized by oxidation capability, was developed and applied to oxidize arsenite, As(III), to arsenate, As(V), in arsenic-rich waters. Batch and column experiments were conducted to test the oxidation ability of the material. Comparisons with the oxidizing agents usually used in arsenic treatment systems were also conducted. In addition, the material has been tested coupled with an iron-based arsenic sorbent, in order to verify its suitability for the dearsenication of drinking waters. IodAC exhibited a high and lasting oxidation potential, since the column tests executed on water spiked with 50 mg/L of arsenic (100% arsenite) showed that 1 cc of IodAC (30 wt% I2) can oxidize about 25 mg of As(III) (0.33 mmol) before showing a dwindling in the oxidation ability. Moreover, an improvement of the arsenic sorption capability of the tested sorbent was also proved. The results confirmed that IodAC is suitable for implementation in water dearsenication plants, in place of the commonly used oxidizing agents, such as sodium hypochlorite or potassium permanganate, and in association with arsenic sorbents. In addition, the well-known antibacterial ability of iodine makes IodAC particularly suitable in areas (such developing countries) where the sanitation of water is a critical topic.

2018 ◽  
Vol 4 (4) ◽  
pp. 529-538 ◽  
Author(s):  
Nashita Moona ◽  
Kathleen R. Murphy ◽  
Mia Bondelind ◽  
Olof Bergstedt ◽  
Thomas J. R. Pettersson

There is a trend of increasing natural organic matter (NOM) in raw drinking waters of Nordic countries due to climate change.


2021 ◽  
Vol 13 (13) ◽  
pp. 7061
Author(s):  
Athanasia K. Tolkou ◽  
Natalia Manousi ◽  
George A. Zachariadis ◽  
Ioannis A. Katsoyiannis ◽  
Eleni A. Deliyanni

In recent years, there has been an increase in public perception of the detrimental side-effects of fluoride to human health due to its effects on teeth and bones. Today, there is a plethora of techniques available for the removal of fluoride from drinking water. Among them, adsorption is a very prospective method because of its handy operation, cost efficiency, and high selectivity. Along with efforts to assist fluoride removal from drinking waters, extensive attention has been also paid to the accurate measurement of fluoride in water. Currently, the analytical methods that are used for fluoride determination can be classified into chromatographic methods (e.g., ionic chromatography), electrochemical methods (e.g., voltammetry, potentiometry, and polarography), spectroscopic methods (e.g., molecular absorption spectrometry), microfluidic analysis (e.g., flow injection analysis and sequential injection analysis), titration, and sensors. In this review article, we discuss the available techniques and the ongoing effort for achieving enhanced fluoride removal by applying novel adsorbents such as carbon-based materials (i.e., activated carbon, graphene oxide, and carbon nanotubes) and nanostructured materials, combining metals and their oxides or hydroxides as well as natural materials. Emphasis has been given to the use of lanthanum (La) in the modification of materials, both activated carbon and hybrid materials (i.e., La/Mg/Si-AC, La/MA, LaFeO3 NPs), and in the use of MgO nanostructures, which are found to exhibit an adsorption capacity of up to 29,131 mg g−1. The existing analytical methodologies and the current trends in analytical chemistry for fluoride determination in drinking water are also discussed.


2019 ◽  
Author(s):  
Luke Skala ◽  
Anna Yang ◽  
Max Justin Klemes ◽  
Leilei Xiao ◽  
William Dichtel

<p>Executive summary: Porous resorcinarene-containing polymers are used to remove halomethane disinfection byproducts and 1,4-dioxane from water.<br></p><p><br></p><p>Disinfection byproducts such as trihalomethanes are some of the most common micropollutants found in drinking water. Trihalomethanes are formed upon chlorination of natural organic matter (NOM) found in many drinking water sources. Municipalities that produce drinking water from surface water sources struggle to remain below regulatory limits for CHCl<sub>3</sub> and other trihalomethanes (80 mg L<sup>–1</sup> in the United States). Inspired by molecular CHCl<sub>3</sub>⊂cavitand host-guest complexes, we designed a porous polymer comprised of resorcinarene receptors. These materials show higher affinity for halomethanes than a specialty activated carbon used for trihalomethane removal. The cavitand polymers show similar removal kinetics as activated carbon and have high capacity (49 mg g<sup>–1</sup> of CHCl<sub>3</sub>). Furthermore, these materials maintain their performance in real drinking water and can be thermally regenerated under mild conditions. Cavitand polymers also outperform activated carbon in their adsorption of 1,4-dioxane, which is difficult to remove and contaminates many public water sources. These materials show promise for removing toxic organic micropollutants and further demonstrate the value of using supramolecular chemistry to design novel absorbents for water purification.<br></p>


2004 ◽  
Vol 4 (5-6) ◽  
pp. 21-28
Author(s):  
S.-C. Kim ◽  
D.-K. Lee

TiO2-coated granular activated carbon was employed for the removal of toxic microcystin-LR from water. High surface area of the activated carbon provided sites for the adsorption of microcystin-LR, and the adsorbed microcystin-LR migrated continuously onto the surface of TiO2 particles which located mainly at the exterior surface in the vicinity of the entrances of the macropores of the activated carbon. The migrated microcystin-LR was finally degraded into nontoxic products and CO2 very quickly. These combined roles of the activated carbon and TiO2 showed a synergistic effect on the efficient degradation of toxic microcystin-LR. A continuous flow fluidized bed reactor with the TiO2-coated activated carbon could successfully be employed for the efficient photocatalytic of microcystin-LR.


2021 ◽  
Author(s):  
Chaoyue Xie ◽  
Yunlan Sun ◽  
Baozhong Zhu ◽  
Weiyi Song ◽  
Minggao Xu

Activated carbon-supported iron-based catalysts (FexOy/AC) show excellent deNOx efficiency. However, the specific adsorption mechanisms of NH3, NO, and O2 molecules on their surfaces are still unknown. In this study, the...


Author(s):  
O.J.I. Kramer ◽  
C. van Schaik ◽  
P.D.R. Dacomba-Torres ◽  
P.J. de Moel ◽  
E.S. Boek ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document