scholarly journals Steric Sea Level Changes from Ocean Reanalyses at Global and Regional Scales

Water ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 1987
Author(s):  
Andrea Storto ◽  
Antonio Bonaduce ◽  
Xiangbo Feng ◽  
Chunxue Yang

Sea level has risen significantly in the recent decades and is expected to rise further based on recent climate projections. Ocean reanalyses that synthetize information from observing networks, dynamical ocean general circulation models, and atmospheric forcing data offer an attractive way to evaluate sea level trend and variability and partition the causes of such sea level changes at both global and regional scales. Here, we review recent utilization of reanalyses for steric sea level trend investigations. State-of-the-science ocean reanalysis products are then used to further infer steric sea level changes. In particular, we used an ensemble of centennial reanalyses at moderate spatial resolution (between 0.5 × 0.5 and 1 × 1 degree) and an ensemble of eddy-permitting reanalyses to quantify the trends and their uncertainty over the last century and the last two decades, respectively. All the datasets showed good performance in reproducing sea level changes. Centennial reanalyses reveal a 1900–2010 trend of steric sea level equal to 0.47 ± 0.04 mm year−1, in agreement with previous studies, with unprecedented rise since the mid-1990s. During the altimetry era, the latest vintage of reanalyses is shown to outperform the previous ones in terms of skill scores against the independent satellite data. They consistently reproduce global and regional upper ocean steric expansion and the association with climate variability, such as ENSO. However, the mass contribution to the global mean sea level rise is varying with products and its representability needs to be improved, as well as the contribution of deep and abyssal waters to the steric sea level rise. Similarly, high-resolution regional reanalyses for the European seas provide valuable information on sea level trends, their patterns, and their causes.

2011 ◽  
Vol 2 (1) ◽  
pp. 25-35 ◽  
Author(s):  
J. Schewe ◽  
A. Levermann ◽  
M. Meinshausen

Abstract. We present climatic consequences of the Representative Concentration Pathways (RCPs) using the coupled climate model CLIMBER-3α, which contains a statistical-dynamical atmosphere and a three-dimensional ocean model. We compare those with emulations of 19 state-of-the-art atmosphere-ocean general circulation models (AOGCM) using MAGICC6. The RCPs are designed as standard scenarios for the forthcoming IPCC Fifth Assessment Report to span the full range of future greenhouse gas (GHG) concentrations pathways currently discussed. The lowest of the RCP scenarios, RCP3-PD, is projected in CLIMBER-3α to imply a maximal warming by the middle of the 21st century slightly above 1.5 °C and a slow decline of temperatures thereafter, approaching today's level by 2500. We identify two mechanisms that slow down global cooling after GHG concentrations peak: The known inertia induced by mixing-related oceanic heat uptake; and a change in oceanic convection that enhances ocean heat loss in high latitudes, reducing the surface cooling rate by almost 50%. Steric sea level rise under the RCP3-PD scenario continues for 200 years after the peak in surface air temperatures, stabilizing around 2250 at 30 cm. This contrasts with around 1.3 m of steric sea level rise by 2250, and 2 m by 2500, under the highest scenario, RCP8.5. Maximum oceanic warming at intermediate depth (300–800 m) is found to exceed that of the sea surface by the second half of the 21st century under RCP3-PD. This intermediate-depth warming persists for centuries even after surface temperatures have returned to present-day values, with potential consequences for marine ecosystems, oceanic methane hydrates, and ice-shelf stability. Due to an enhanced land-ocean temperature contrast, all scenarios yield an intensification of monsoon rainfall under global warming.


2000 ◽  
Vol 30 ◽  
pp. 197-203 ◽  
Author(s):  
Martin Wild ◽  
Atsumu Ohmura

AbstractFor projecting future sea level, the mass-balance changes on Greenland and Antarctica are considered to be crucial. Promising tools for such estimates are general circulation models (GCM). Until recently, a major impediment was their coarse grid resolution (3°-6°) causing substantial uncertainties in the mass-balance calculations of the poorly resolved ice sheets. The present study is based on a new climate-change experiment of the highest resolution currently feasible (1.1 °) performed with the ECHAM4 T106 GCM, thereby increasing confidence in the projected mass-balance and sea-level changes. This new experiment, with doubled CO2 concentration, suggests that the mass gain in Antarctica due to increased accumulation exceeds the melt-induced mass loss in Greenland by a factor of three. The resulting mass-balance change on both ice sheets is equivalent to a net sea-level decrease of 0.6 mm a"1 under doubled CO2 conditions. This may compensate for a significant portion of the melt-induced sea-level rise from the smaller glaciers and ice caps, thus leaving thermal expansion as the dominant factor for sea-level rise over the next decades. This compensating effect, however, no longer applies should atmospheric CO2 concentration reach levels well above "doubled the present value". On the contrary, under these conditions, the greenhouse warming would become large enough to induce substantial melting also on the Antarctic ice sheet, thereby significantly accelerating global sea-level rise.


2010 ◽  
Vol 1 (1) ◽  
pp. 297-324 ◽  
Author(s):  
J. Schewe ◽  
A. Levermann ◽  
M. Meinshausen

Abstract. We present climatic consequences of the Representative Concentration Pathways (RCPs) using the coupled climate model CLIMBER-3α, which contains a statistical-dynamical atmosphere and a three-dimensional ocean model. We compare those with emulations of 19 state-of-the-art atmosphere-ocean general circulation models (AOGCM) using MAGICC6. The RCPs are designed as standard scenarios for the forthcoming IPCC Fifth Assessment Report to span the full range of possible future greenhouse gas (GHG) concentrations pathways. The lowest of the RCP scenarios, RCP3-PD, is projected in CLIMBER-3α to imply a maximal warming by the middle of the 21st century slightly above 1.5 °C and a slow decline of temperatures thereafter, approaching today's level by 2500. We identify two mechanisms that slow down global cooling after GHG concentrations peak: The known inertia induced by mixing-related oceanic heat uptake; and a change in oceanic convection that enhances ocean heat loss in high latitudes, reducing the surface cooling rate by almost 50%. Steric sea level rise under the RCP3-PD scenario continues for 200 years after the peak in surface air temperatures, stabilizing around 2250 at 30 cm. This contrasts with around 2 m of steric sea level rise by 2500 under the highest scenario, RCP8.5. Maximum oceanic warming at intermediate depth (300–800 m) is found to exceed that of the sea surface by the second half of the 21st century under RCP3-PD. This intermediate-depth warming persists for centuries even after surface temperatures have returned to present-day values, with potential consequences for marine ecosystems, oceanic methane hydrates, and ice-shelf stability. Due to an enhanced land-ocean temperature contrast, all scenarios yield an intensification of monsoon rainfall under global warming.


2014 ◽  
Vol 27 (2) ◽  
pp. 824-834 ◽  
Author(s):  
Christopher G. Piecuch ◽  
Rui M. Ponte

Abstract Global-mean sea level change partly reflects volumetric expansion of the oceans because of density change, otherwise known as global-mean steric sea level change. Owing to nonlinearities in the equation of state of seawater, the nature of processes contributing to recent observed global-mean steric sea level changes has not been well understood. Using a data-constrained ocean state estimate, global-mean steric sea level change over 1993–2003 is revisited, and contributions from ocean transports and surface exchanges are quantified using closed potential temperature and salinity budgets. Analyses demonstrate that estimated decadal global-mean steric sea level change results mainly from a slight, time-mean imbalance between atmospheric forcing and ocean transports over the integration period: surface heat and freshwater exchanges produce a trend in global-mean steric sea level that is mainly offset by the redistribution of potential temperature and salinity through small-scale diffusion and large-scale advection. A set of numerical experiments demonstrates that global-mean steric sea level changes simulated by ocean general circulation models are sensitive to the regional distribution of ocean heat and freshwater content changes.


1979 ◽  
Vol 24 (90) ◽  
pp. 213-230 ◽  
Author(s):  
Craig S. Lingle ◽  
James A. Clark

AbstractThe Antarctic ice sheet has been reconstructed at 18000 years b.p. by Hughes and others (in press) using an ice-flow model. The volume of the portion of this reconstruction which contributed to a rise of post-glacial eustatic sea-level has been calculated and found to be (9.8±1.5) × 106 km3. This volume is equivalent to 25±4 m of eustatic sea-level rise, defined as the volume of water added to the ocean divided by ocean area. The total volume of the reconstructed Antarctic ice sheet was found to be (37±6) × 106 km3. If the results of Hughes and others are correct, Antarctica was the second largest contributor to post-glacial eustatic sea-level rise after the Laurentide ice sheet. The Farrell and Clark (1976) model for computation of the relative sea-level changes caused by changes in ice and water loading on a visco-elastic Earth has been applied to the ice-sheet reconstruction, and the results have been combined with the changes in relative sea-level caused by Northern Hemisphere deglaciation as previously calculated by Clark and others (1978). Three families of curves have been compiled, showing calculated relative sea-level change at different times near the margin of the possibly unstable West Antarctic ice sheet in the Ross Sea, Pine Island Bay, and the Weddell Sea. The curves suggest that the West Antarctic ice sheet remained grounded to the edge of the continental shelf until c. 13000 years b.p., when the rate of sea-level rise due to northern ice disintegration became sufficient to dominate emergence near the margin predicted otherwise to have been caused by shrinkage of the Antarctic ice mass. In addition, the curves suggest that falling relative sea-levels played a significant role in slowing and, perhaps, reversing retreat when grounding lines approached their present positions in the Ross and Weddell Seas. A predicted fall of relative sea-level beneath the central Ross Ice Shelf of as much as 23 m during the past 2000 years is found to be compatible with recent field evidence that the ice shelf is thickening in the south-east quadrant.


2003 ◽  
Vol 50 ◽  
pp. 105-114
Author(s):  
T. Hansen ◽  
A.T. Nielsen

Over 5000 trilobites have been collected from Lower Ordovician rocks exposed at the Lynna River in the Volkhov region, east of St. Petersburg, Russia. Bed-by-bed sampling has been carried out through the upper part of Volkhov Formation (top of Jeltiaki Member and the entire Frizy Member), the Lynna Formation and the basal part of the Obukhovo Formation. This interval, which is 7.5 metres thick, correlates with the upper part of the Arenig Series, and presumably even ranges into the very base of the Llanvirn. A preliminary biostratigraphical investigation of top Jeltiaki Member (BIIβ), Frizy Member (BIIγ) and basal Lynna Formation (BIIIα) reveals a rather continuous faunal turnover lacking sharp boundaries, and the biostratigraphical zonation (BIIβ–BIIIα) is primarily defined by the index trilobite taxa. The trilobite ranges are generally in agreement with the pattern described by Schmidt in 1907. The abundance ratio between Asaphus and the ptychopygids seems to be related to changes in relative sea level with Asaphus preferring the most shallow water conditions. A tentative interpretation of sea-level changes suggests an initial drowning at the base of BIIγ, immediately followed by a lowstand that in turn was succeeded by a moderate sea-level rise and then a significant fall. The last marks the BIIγ/BIIIα boundary. Correlation with sections in Scandinavia suggests that the basal part of BIIγ is strongly condensed.


2020 ◽  
Vol 9 (3) ◽  
pp. 185 ◽  
Author(s):  
Nevin Avşar ◽  
Şenol Kutoğlu

Global mean sea level has been rising at an increasing rate, especially since the early 19th century in response to ocean thermal expansion and ice sheet melting. The possible consequences of sea level rise pose a significant threat to coastal cities, inhabitants, infrastructure, wetlands, ecosystems, and beaches. Sea level changes are not geographically uniform. This study focuses on present-day sea level changes in the Black Sea using satellite altimetry and tide gauge data. The multi-mission gridded satellite altimetry data from January 1993 to May 2017 indicated a mean rate of sea level rise of 2.5 ± 0.5 mm/year over the entire Black Sea. However, when considering the dominant cycles of the Black Sea level time series, an apparent (significant) variation was seen until 2014, and the rise in the mean sea level has been estimated at about 3.2 ± 0.6 mm/year. Coastal sea level, which was assessed using the available data from 12 tide gauge stations, has generally risen (except for the Bourgas Station). For instance, from the western coast to the southern coast of the Black Sea, in Constantza, Sevastopol, Tuapse, Batumi, Trabzon, Amasra, Sile, and Igneada, the relative rise was 3.02, 1.56, 2.92, 3.52, 2.33, 3.43, 5.03, and 6.94 mm/year, respectively, for varying periods over 1922–2014. The highest and lowest rises in the mean level of the Black Sea were in Poti (7.01 mm/year) and in Varna (1.53 mm/year), respectively. Measurements from six Global Navigation Satellite System (GNSS) stations, which are very close to the tide gauges, also suggest that there were significant vertical land movements at some tide gauge locations. This study confirmed that according to the obtained average annual phase value of sea level observations, seasonal sea level variations in the Black Sea reach their maximum annual amplitude in May–June.


2020 ◽  
Vol 12 (9) ◽  
pp. 3737
Author(s):  
Osamu Nishiura ◽  
Makoto Tamura ◽  
Shinichiro Fujimori ◽  
Kiyoshi Takahashi ◽  
Junya Takakura ◽  
...  

Coastal areas provide important services and functions for social and economic activities. Damage due to sea level rise (SLR) is one of the serious problems anticipated and caused by climate change. In this study, we assess the global economic impact of inundation due to SLR by using a computable general equilibrium (CGE) model that incorporates detailed coastal damage information. The scenario analysis considers multiple general circulation models, socioeconomic assumptions, and stringency of climate change mitigation measures. We found that the global household consumption loss proportion will be 0.045%, with a range of 0.027−0.066%, in 2100. Socioeconomic assumptions cause a difference in the loss proportion of up to 0.035% without greenhouse gas (GHG) emissions mitigation, the so-called baseline scenarios. The range of the loss proportion among GHG emission scenarios is smaller than the differences among the socioeconomic assumptions. We also observed large regional variations and, in particular, the consumption losses in low-income countries are, relatively speaking, larger than those in high-income countries. These results indicate that, even if we succeed in stabilizing the global mean temperature increase below 2 °C, economic losses caused by SLR will inevitably happen to some extent, which may imply that keeping the global mean temperature increase below 1.5 °C would be worthwhile to consider.


1999 ◽  
Vol 52 (3) ◽  
pp. 350-359 ◽  
Author(s):  
W.Roland Gehrels

A relative sea-level history is reconstructed for Machiasport, Maine, spanning the past 6000 calendar year and combining two different methods. The first method establishes the long-term (103 yr) trend of sea-level rise by dating the base of the Holocene saltmarsh peat overlying a Pleistocene substrate. The second method uses detailed analyses of the foraminiferal stratigraphy of two saltmarsh peat cores to quantify fluctuations superimposed on the long-term trend. The indicative meaning of the peat (the height at which the peat was deposited relative to mean tide level) is calculated by a transfer function based on vertical distributions of modern foraminiferal assemblages. The chronology is determined from AMS 14C dates on saltmarsh plant fragments embedded in the peat. The combination of the two different approaches produces a high-resolution, replicable sea-level record, which takes into account the autocompaction of the peat sequence. Long-term mean rates of sea-level rise, corrected for changes in tidal range, are 0.75 mm/yr between 6000 and 1500 cal yr B.P. and 0.43 mm/yr during the past 1500 year. The foraminiferal stratigraphy reveals several low-amplitude fluctuations during a relatively stable period between 1100 and 400 cal yr B.P., and a sea-level rise of 0.5 m during the past 300 year.


2016 ◽  
Vol 29 (13) ◽  
pp. 4801-4816 ◽  
Author(s):  
Christopher G. Piecuch ◽  
Sönke Dangendorf ◽  
Rui M. Ponte ◽  
Marta Marcos

Abstract Understanding the relationship between coastal sea level and the variable ocean circulation is crucial for interpreting tide gauge records and projecting sea level rise. In this study, annual sea level records (adjusted for the inverted barometer effect) from tide gauges along the North American northeast coast over 1980–2010 are compared to a set of data-assimilating ocean reanalysis products as well as a global barotropic model solution forced with wind stress and barometric pressure. Correspondence between models and data depends strongly on model and location. At sites north of Cape Hatteras, the barotropic model shows as much (if not more) skill than ocean reanalyses, explaining about 50% of the variance in the adjusted annual tide gauge sea level records. Additional numerical experiments show that annual sea level changes along this coast from the barotropic model are driven by local wind stress over the continental shelf and slope. This result is interpreted in the light of a simple dynamic framework, wherein bottom friction balances surface wind stress in the alongshore direction and geostrophy holds in the across-shore direction. Results highlight the importance of barotropic dynamics on coastal sea level changes on interannual and decadal time scales; they also have implications for diagnosing the uncertainties in current ocean reanalyses, using tide gauge records to infer past changes in ocean circulation, and identifying the physical mechanisms responsible for projected future regional sea level rise.


Sign in / Sign up

Export Citation Format

Share Document