scholarly journals Reclaiming Tropical Saline-Sodic Soils with Gypsum and Cow Manure

Water ◽  
2019 ◽  
Vol 12 (1) ◽  
pp. 57 ◽  
Author(s):  
Francisco Gonçalo Filho ◽  
Nildo da Silva Dias ◽  
Stella Ribeiro Prazeres Suddarth ◽  
Jorge F. S. Ferreira ◽  
Ray G. Anderson ◽  
...  

Saline-sodic soils are a major impediment for agricultural production in semi-arid regions. Salinity and sodicity drastically reduce agricultural crop yields, damage farm equipment, jeopardize food security, and render soils unusable for agriculture. However, many farmers in developing semi-arid regions cannot afford expensive amendments to reclaim saline-sodic soils. Furthermore, existing research does not cover soil types (e.g., Luvisols and Lixisols) that are found in many semi-arid regions of South America. Therefore, we used percolation columns to evaluate the effect of inexpensive chemical and organic amendments (gypsum and cow manure) on the reclamation of saline-sodic soils in the northeast of Brazil. Soil samples from two layers (0–20 cm and 20–40 cm in depth) were collected and placed in percolation columns. Then, we applied gypsum into the columns, with and without cow manure. The experiment followed a complete randomized design with three replications. The chemical amendment treatments included a control and four combinations of gypsum and cow manure. Percolation columns were subjected to a constant flood layer of 55 mm. We evaluated the effectiveness of sodic soil reclamation treatments via changes in soil hydraulic conductivity, chemical composition (cations and anions), electrical conductivity of the saturated soil-paste extract, pH, and the exchangeable sodium percentage. These results suggest that the combined use of gypsum and cow manure is better to reduce soil sodicity, improve soil chemical properties, and increase water infiltration than gypsum alone. Cow manure at 40 ton ha−1 was better than at 80 ton ha−1 to reduce the sodium adsorption ratio.

2021 ◽  
Vol 247 ◽  
pp. 01047
Author(s):  
Mohamed Hafez ◽  
Alexander I. Popov ◽  
Mohamed Rashad

The study focused on investigating the contribution of reclamation strategies of saline-sodic soils and their impacts on soil fertility characteristics. In this study, the soil treatments were denoted as: SG1 and SG2 (23.8 and 47.7 ton/ha of spent grain); TC1 and TC2 (23.8 and 47.6 ton/ha of compost); Azospirillium in inoculation with seed and soil (Az); Az + SG1 (Az+SG1); Az + TC1 (Az+TC1); mineral fertilizers (NPK); and control (CK). All treatments were mixed in pots with 30 kg soil. The results showed that reclamation with Az and SG2 treatments significantly affected soil pH, EC, and macronutrients. In contrast, no significant (P > 0.05) effects were found with the two compost levels and NPK treatments. The salt contents were maximal in the control treatment, while decreased with Az, SG2, and Az+SG treatments. However, SG2 application decreased the soluble Na+ concentrations in soil solution. The effect of organic and biological reclamations on chemical properties was in the following order: Az+SG > SG2 > Az > TC2 > Az+M > SG1 > TC1 > NPK > CK. Moreover, it positively impacted the salt contents, which improved soil chemical properties in the saline-sodic soil after three months of seed sowing in the greenhouse.


2008 ◽  
Vol 146 (6) ◽  
pp. 677-687 ◽  
Author(s):  
J. F. HERENCIA ◽  
J. C. RUIZ ◽  
S. MELERO ◽  
P. A. GARCIA GALAVÍS ◽  
C. MAQUEDA

SUMMARYThe transition from conventional to organic farming is accompanied by changes in soil chemical properties and processes that could affect soil fertility. The organic system is very complex and the present work carries out a short-term comparison of the effects of organic and conventional agriculture on the chemical properties of a silty loam soil (Xerofluvent) located in the Guadalquivir River Valley, Seville, Spain, through a succession of five crop cycles over a 3-year period. Crop rotation and varieties were compared in a conventional system using inorganic fertilizer and two organic systems using either plant compost or manure. At the end of the study, organic farming management resulted in higher soil organic carbon (OC), N and available P, K, Fe and Zn. The available Mn and especially Cu values did not show significant differences. In general, treatment with manure resulted in more rapid increases in soil nutrient values than did plant compost, which had an effect on several crop cycles later. The present study demonstrated that the use of organic composts results in an increase in OC and the storage of nutrients, which can provide long-term fertility benefits. Nevertheless, at least 2–3 years of organic management are necessary, depending on compost characteristics, to observe significant differences. Average crop yields were 23% lower in organic crops. Nevertheless, only two crops showed statistically significant differences.


2020 ◽  
Vol 45 (4) ◽  
Author(s):  
J. C. Onwuka ◽  
J. M. Nwaedozie ◽  
E. H. Kwon – Dung ◽  
P. T. Terna

Soil nutrient status determines its crop productivity and provide basis for appropriate soil management. The soil samples which spread across the agricultural farms along major roads in Nasarawa Eggon and Doma areas of Nasarawa State, Nigeria; were analyzed for both physical and chemical properties. Most of the studied Nasarawa Eggon and Doma soils were extremely acidic. Textural class showed high sand content (>80) of the investigated soils, indicating possible high rate of water infiltration in these soils which will lead to their low water holding capacity. The organic carbon (OC) contents in both locations, were rated high as it varied from 1.50 to 1.85 %, whereas total nitrogen (TN) levels ranged from 0.07 to 0.21 % in the studied soils. The levels of available P, Ca, K and Mg were inadequate for satisfactory plant growth, considering their respective critical level established for Nigerian soils. Mineral analysis showed the presence of essential elements such as S, K, Ca, Mg, Fe, Mn, Cu, Ni, Co, Mo and Zn. Beneficial/functional elements such as Ti, V, Rb and Sr, were found in significant quantities in the investigated soils of both studied areas. Thus, Potential K and Ca deficiency could be greatly compensated by Rb and Sr uptake. The quantities of non – beneficial elements such as Sn, Sb, Te, Cs, Ba and Sc were significant in soils from Nasarawa Eggon but were insignificant in Doma soils. Thus, this study revealed that nutrient content of the soil differs from the nutrient availability for plant uptake and the fertility of investigated soils in both locations depended on the soil pH and textural class. Also, the conditions of the soils at both studied locations, are unfavourable for plant uptake of certain important nutrients and could lead to low crop yields if there is no effective nutrient and soil management.


2017 ◽  
Vol 14 (2) ◽  
pp. 643-649
Author(s):  
Forough Kamyab-Talesh ◽  
Behrouz Mostafazadeh-Fard ◽  
Majid Vazifedoust ◽  
Mohammad Shayannejad ◽  
Maryam Navabian

ABSTRACT: Soil and water salinities are major environmental factors limiting the productivity of agricultural lands especially in arid and semi arid regions. To determine salinity threshold values and slope of the yield decrements for crops of wheat, barley and maize, SWAP model was study for an arid region located in Semnan Province (52◦25' N 35◦11' E), central part of Iran with area of 35000 ha including 94 villages belonged to irrigation network of Garmsar district. The data collected from the above 94 villages for years 1998 to 2007 were used to calibrate and simulate yield of wheat, barley and maize using the SWAP model. The irrigation water salinities of 2, 4, 6 and 8 dS m-1 were used and yield reductions versus soil saturation extracts were evaluated and salinity threshold values and slope of the yield reductions were determined for each of the above crops. The results showed that the SWAP model predict crop yields with good accuracy and the threshold values and slope of the yield reductions are site dependent. These values should be determined for each area in order to be able to plan better irrigation scheduling for arid regions which have soil and irrigation water salinities problems.


2018 ◽  
Vol 34 (1) ◽  
pp. 43-55 ◽  
Author(s):  
Deborah S. Page-Dumroese ◽  
Monica R. Ott ◽  
Daniel G. Strawn ◽  
Joanne M. Tirocke

Abstract. New cost-effective strategies are needed to reclaim soils disturbed from mining activity on National Forests. In addition, disposal of waste wood from local timber harvest operations or biosolids from waste water treatment plants can be expensive. Therefore, using organic byproducts for soil reclamation activities on National Forests may provide an opportunity to increase soil cover and productivity, and decrease restoration costs. To test the effectiveness of these amendments for reclamation, a field study was established using organic amendments applied to gold dredgings capped with 10 cm of loam and with little regenerating vegetation within the Umatilla National Forest in northeastern Oregon. Study plots had biochar (11 Mg/ha), biosolids (17 Mg/ha), or wood chips (22 Mg/ha) applied singly or in combination. Each plot was divided in half. One half of the plot was seeded with native grasses and forb and the other half was planted with a combination of California brome ( Hook & Am.) and Jepson’s blue wildrye ( Buckl.). After two growing seasons, there were no significant differences in plant cover between the planted or seeded plots. Biosolids, biosolid + biochar + wood chips, and biosolid + wood chips had greater grass and forb planted cover after two years; seeded plots on the biosolid + biochar + wood chips and biosolid + wood chip treatments had the greatest grass and forb cover. Soil properties were significantly altered by individual treatments; combination treatments improved nutrient availability and soil moisture, resulting in up to twice as much plant cover than in the control plots. Forest managers can produce biochar and wood chips from the abundant forest waste generated during harvest operations, and class “A” biosolids are available in Oregon from local municipalities. Using these three amendments in combination to restore disturbed mine soils can provide an affordable and effective strategy. Keywords: Biochar, Biosolids, Bromus carinatus, Elymus glaucus, Wood chips.


2019 ◽  
Author(s):  
Yiben Cheng ◽  
Hongbin Zhan ◽  
Mingchang Shi

Abstract. Desertification is a global environmental and societal concern at present, and China is one of the countries that face the most severe damage of desertification. China’s so-called Three North shelterbelt Program (3NSP) has produced a vast area of lined forest in the semi-arid regions with the purpose of battling desertification. Such a wind-breaking and sand-fixing forest has successfully slowed down the incursion of desert. However, the vast artificial forestry consumes a large amount of water resources, which profoundly affect the fragile ecological environment in the semi-arid regions. In turn, a large amount of water loss also causes a great number of vegetation deaths or defects. To understand the water balance and sustainable development of artificial forest in semi-arid region, this study uses the 30-year-old lined Pinus sylvestris var. mongolica sand-fixing forest in the eastern part of Mu Us Sandy land in Northwestern China as an example. Specifically, this investigation studies the redistribution of water in soil under existing precipitation conditions, so as to evaluate whether the rain-feed forestry can develop sustainably or not. Rain gauge, newly designed lysimeter and soil moisture sensor are used to monitor precipitation, deep soil recharge (DSR) and soil water content, resulting in an accurate estimation of annual moisture distribution of the rain-feed Pinus sylvestris var. mongolica. The study shows that there are two obvious moisture recharge processes in an annual base for the Pinus sylvestris var. mongolica forest soil in Mu Us Sandy land: 1) the snow melted water infiltration-recharge process in the spring, and 2) the precipitation-recharge process in the summer. The recharge depth of the first process is 160 cm. The second process results in DSR (referring to recharge that can reach a depth more than 200 cm and may eventually replenish the groundwater reservoir). The DSR of 2016–2018 is 1.4 mm, 0.2 mm, 1.2 mm, respectively. To reach the recharge depths of 20 cm, 40 cm, 80 cm, 120 cm, 160 cm, and 200 cm, the corresponding precipitation intensities have to be 2.6 mm/d, 3.2 mm/d, 3.4 mm/d, 8.2 mm/d, 8.2 mm/d, and 13.2 mm/d, respectively. The annual evaporation amount in the Mu Us Sandyland Pinus sylvestris var. mongolica forest is 426.96 mm in 2016, 324.6 mm in 2017, 416.253 mm in 2018. This study concludes that under the current precipitation conditions, very small but observable DSR happened, thus the groundwater system underneath the forest may be replenished, meaning that the artificial Pinus forestry can probably develop sustainably. This study confirms that developing limited amount forestry in semi-arid regions is likely in a sustainable fashion. The widely variable annual precipitation in semi-arid areas may affect this conclusion and should be investigated in the future.


Author(s):  
M. Mosupiemang ◽  
K. Bareeleng ◽  
M.S. Chiduwa and O.O. Molosiwa

Background: Crop yields in the semi-arid regions are low due to climatic and soil related constraints.Soybean as one of the most important legume crops grown worldwide, has a role to contribute nitrogen to improve nutrient poor soils in Africa. A study was conducted to examine the effects of Bradyrhizobium spp inoculations on the growth and yield of soybean varieties in a glasshouse.Method: The study was arranged in a randomized complete block factorial design, with factor A being two soybean varieties (Bimha and Status) while factor B was inoculation using four Bradyrhizobium strains and the uninoculated control. Results: Bradyrhizobium inoculation significantly (P less than 0.001)affected days to 50% flowering, days to emergence, nodule number, root dry weight and grain yield and yield traits. Parameters that were affected by both inoculant strain and variety included days to 50% flowering, days to emergence, number of pods per plant, pod weight and number of seeds per pod. The interaction effect of variety and Bradyrhizobium inoculant strain was observed only on number of pods per plants. Our study shows that soybean grows well when inoculated with Bradyrhizobium inoculants, in semi-arid conditions of Botswana.


OCL ◽  
2017 ◽  
Vol 25 (1) ◽  
pp. D106 ◽  
Author(s):  
Francisco Sávio Gomes Pereira ◽  
Antonio Demóstenes de Sobral ◽  
Ana Maria Ribeiro Bastos da Silva ◽  
Maria Aparecida Guilherme da Rocha

This study describes properties of biomasses of Moringa oleifera Lamarck for energetic applications of production of biodiesel and briquettes. The seeds collected of the mature pods were the initial biomasses used of this plant. The seeds were separated into husks and oilseed grains, from which the oils were extracted by mechanical pressing and by solvent extraction. The crude oil mixed (of pressing and by solvent) was degummed, neutralized, washed, dried and characterized. The purified oil was converted into methyl biodiesel in homogeneous alkaline transesterification, which was purified and characterized. The residual peels and pies had their calorific powers measured and compared with classic agricultural residues: firewood, sugarcane bagasse and coconut husks. Moringa culture was compared to soybeans in agricultural and biodiesel production perspectives. The analytical results show that the biomasses of the moringa are favorable as renewable biofuels like biodiesel or briquettes due to the good calorific power and simple and accessible productive technology. The production of briquettes starting from the biomasses of the moringa would be recommended with the uses of the pod husks, seed peels and pies (cakes) of extraction of the oil. The agricultural management and the simple productive technologies applied to the moringa are favorable for social inclusion by enabling family agriculture.


Soil Research ◽  
2014 ◽  
Vol 52 (2) ◽  
pp. 120 ◽  
Author(s):  
J. McL. Bennett ◽  
R. S. B. Greene ◽  
B. W. Murphy ◽  
P. Hocking ◽  
D. Tongway

This paper determines the influence of lime and gypsum on the rehabilitation of a degraded sodic soil in a semi-arid environment 12 years after application. The aim was to assess rehabilitation strategies for sodic soils as alternatives to the application of gypsum alone. An experimental site was used where lime and gypsum combinations (L0G0, lime 0 t ha–1 and gypsum 0 t ha–1; L0G1, L0G2.5, L0G5, L1G0, L2.5G0, L5G0, L1G1, L2.5G1) had been applied 12 years prior, in 1994. An earlier study had reported on the effects after 3 years of the chemical ameliorants and tillage on a range of soil physical and chemical properties at the site. The current study, sampled in 2006, assessed the effects after 12 years of lime and gypsum on soil chemistry, stability, hydraulics, vegetative growth and soil respiration. Calcium, primarily from lime, was observed to have a major effect on soil health. Significant effects on soil chemistry were limited to increases in exchangeable calcium and decreases in exchangeable magnesium, although aggregate stability in water and hydraulic conductivity were significantly improved where L5G0 was applied. Vegetation patch width, total nitrogen and carbon, and soil respiration were significantly improved where lime had been added at 2.5 or 5 t ha–1. As no lime could be detected in the soil 12 years after application, it was deduced that lime had acted as a catalyst for increased functionality in soil and vegetation interactions. This increased soil functionality resulted in an increased rate of lime dissolution in the soil.


Sign in / Sign up

Export Citation Format

Share Document