Using Organic Amendments to Restore Soil Physical and Chemical Properties of a Mine Site in Northeastern Oregon, USA

2018 ◽  
Vol 34 (1) ◽  
pp. 43-55 ◽  
Author(s):  
Deborah S. Page-Dumroese ◽  
Monica R. Ott ◽  
Daniel G. Strawn ◽  
Joanne M. Tirocke

Abstract. New cost-effective strategies are needed to reclaim soils disturbed from mining activity on National Forests. In addition, disposal of waste wood from local timber harvest operations or biosolids from waste water treatment plants can be expensive. Therefore, using organic byproducts for soil reclamation activities on National Forests may provide an opportunity to increase soil cover and productivity, and decrease restoration costs. To test the effectiveness of these amendments for reclamation, a field study was established using organic amendments applied to gold dredgings capped with 10 cm of loam and with little regenerating vegetation within the Umatilla National Forest in northeastern Oregon. Study plots had biochar (11 Mg/ha), biosolids (17 Mg/ha), or wood chips (22 Mg/ha) applied singly or in combination. Each plot was divided in half. One half of the plot was seeded with native grasses and forb and the other half was planted with a combination of California brome ( Hook & Am.) and Jepson’s blue wildrye ( Buckl.). After two growing seasons, there were no significant differences in plant cover between the planted or seeded plots. Biosolids, biosolid + biochar + wood chips, and biosolid + wood chips had greater grass and forb planted cover after two years; seeded plots on the biosolid + biochar + wood chips and biosolid + wood chip treatments had the greatest grass and forb cover. Soil properties were significantly altered by individual treatments; combination treatments improved nutrient availability and soil moisture, resulting in up to twice as much plant cover than in the control plots. Forest managers can produce biochar and wood chips from the abundant forest waste generated during harvest operations, and class “A” biosolids are available in Oregon from local municipalities. Using these three amendments in combination to restore disturbed mine soils can provide an affordable and effective strategy. Keywords: Biochar, Biosolids, Bromus carinatus, Elymus glaucus, Wood chips.

Water ◽  
2019 ◽  
Vol 12 (1) ◽  
pp. 57 ◽  
Author(s):  
Francisco Gonçalo Filho ◽  
Nildo da Silva Dias ◽  
Stella Ribeiro Prazeres Suddarth ◽  
Jorge F. S. Ferreira ◽  
Ray G. Anderson ◽  
...  

Saline-sodic soils are a major impediment for agricultural production in semi-arid regions. Salinity and sodicity drastically reduce agricultural crop yields, damage farm equipment, jeopardize food security, and render soils unusable for agriculture. However, many farmers in developing semi-arid regions cannot afford expensive amendments to reclaim saline-sodic soils. Furthermore, existing research does not cover soil types (e.g., Luvisols and Lixisols) that are found in many semi-arid regions of South America. Therefore, we used percolation columns to evaluate the effect of inexpensive chemical and organic amendments (gypsum and cow manure) on the reclamation of saline-sodic soils in the northeast of Brazil. Soil samples from two layers (0–20 cm and 20–40 cm in depth) were collected and placed in percolation columns. Then, we applied gypsum into the columns, with and without cow manure. The experiment followed a complete randomized design with three replications. The chemical amendment treatments included a control and four combinations of gypsum and cow manure. Percolation columns were subjected to a constant flood layer of 55 mm. We evaluated the effectiveness of sodic soil reclamation treatments via changes in soil hydraulic conductivity, chemical composition (cations and anions), electrical conductivity of the saturated soil-paste extract, pH, and the exchangeable sodium percentage. These results suggest that the combined use of gypsum and cow manure is better to reduce soil sodicity, improve soil chemical properties, and increase water infiltration than gypsum alone. Cow manure at 40 ton ha−1 was better than at 80 ton ha−1 to reduce the sodium adsorption ratio.


2011 ◽  
Vol 91 (6) ◽  
pp. 969-984 ◽  
Author(s):  
J. J. Miller ◽  
B. W. Beasley ◽  
C. F. Drury ◽  
B. J. Zebarth

Miller, J. J., Beasley, B. W., Drury, C. F. and Zebarth, B. J. 2011. Accumulation and redistribution of residual chloride, nitrate, and soil test phosphorus in soil profiles amended with fresh and composted cattle manure containing straw or wood-chip bedding. Can. J. Soil Sci. 91: 969–984. Limited research has compared the effect of fresh versus composted beef (Bos taurus) cattle feedlot manure containing straw or wood chips on accumulation and redistribution of residual chloride (Cl), NO3-N, and soil test P (STP) in soil profiles of the Great Plains region of North America. Barley (Hordeum vulgare L.) was grown (1999–2007) on an irrigated clay loam soil in southern Alberta where organic amendments and fertilizer were annually applied for 9 yr from 1998 to 2006. The field experiment was a factorial arrangement of two manure types (fresh versus composted feedlot manure), two bedding materials (straw versus wood-chips), and three application rates (13, 39, 77 Mg ha−1dry wt). There was also one inorganic (IN) fertilizer treatment and an unamended control. The soil profile (0–1.5 m) was sampled in the fall of 1999 to 2002, 2004, 2006, and 2007 and analyzed for residual soil NO3-N, Cl, and STP. Manure type had a significant (P≤0.05) effect on the accumulation of these chemicals, but there was an interaction with application rate (NO3-N), or with bedding and year (STP). The maximum accumulation of Cl after 9 yr was at the 0.6 to 0.9 m depth, but mean values at this depth were similar for the four organic amendments. The maximum accumulation of NO3-N after 9 yr (2007) was at the 0.3 to 0.6 m depth, and mean values at this depth were significantly greater by four- to sixfold for FM and CM with straw than wood-chips, which suggested greater N immobilization in soils with wood. Redistribution of Cl and NO3-N downward into the soil profile suggested a potential for leaching of these chemicals below the root zone. In contrast, soil test P did not accumulate below the 0.3 m depth, suggesting little potential for leaching. However, accumulation of soil test P at this depth was generally greater for the amendment treatments compared with inorganic fertilizer and was likely related to greater P applied in the amendments.


Energies ◽  
2019 ◽  
Vol 12 (9) ◽  
pp. 1590 ◽  
Author(s):  
Angelo Del Giudice ◽  
Andrea Acampora ◽  
Enrico Santangelo ◽  
Luigi Pari ◽  
Simone Bergonzoli ◽  
...  

Drying is a critical point for the exploitation of biomass for energy production. High moisture content negatively affects the efficiency of power generation in combustion and gasification systems. Different types of dryers are available however; it is known that rotary dryers have low cost of maintenance and consume 15% and 30% less in terms of specific energy. The study analyzed the drying process of woody residues using a new prototype of mobile rotary dryer cocurrent flow. Woodchip of poplar (Populus spp.), black locust (Robinia pseudoacacia L.), and grapevine (Vitis vinifera L.) pruning were dried in a rotary drier. The drying cycle lasted 8 h for poplar, 6 h for black locust, and 6 h for pruning of grapevine. The initial biomass had a moisture content of around 50% for the poplar and around 30% for grapevine and black locust. The study showed that some characteristics of the biomass (e.g., initial moisture content, particle size distribution, bulk density) influence the technical parameters (i.e., airflow temperature, rate, and speed) of the drying process and, hence, the energy demand. At the end of the drying process, 17% of water was removed for poplar wood chips and 31% for grapevine and black locust wood chips. To achieve this, result the three-biomass required 1.61 (poplar), 0.86 (grapevine), and 1.12 MJ kgdry solids−1 (black locust), with an efficiency of thermal drying (η) respectively of 37%, 12%, and 27%. In the future, the results obtained suggest an increase in the efficiency of the thermal insulation of the mobile dryer, and the application of the mobile dryer in a small farm, for the recovery of exhaust gases from thermal power plants.


2021 ◽  
Author(s):  
Luke D Geoffrion ◽  
David Medina Cruz ◽  
Matthew Kusper ◽  
Sakr Elsaidi ◽  
Fumiya Watanabe ◽  
...  

Bismuth oxide is an important bismuth compound having applications in electronics, photo-catalysis and medicine. At the nanoscale, bismuth oxide experiences a variety of new physico-chemical properties because of its increased...


Processes ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 1360
Author(s):  
Ekaterina Budenkova ◽  
Stanislav Sukhikh ◽  
Svetlana Ivanova ◽  
Olga Babich ◽  
Vyacheslav Dolganyuk ◽  
...  

Enzymatic hydrolysis of cellulose-containing raw materials, using Aspergillus niger, were studied. Filter paper, secondary cellulose-containing or starch-containing raw materials, miscanthus cellulose after alkaline or acid pretreatment, and wood chip cellulose, were used as substrates. The study focused on a wild A. niger strain, treated, or not (control), by ultraviolet (UV) irradiations for 45, 60, or 120 min (UV45, UV60, or UV120), or by UV irradiation for 120 min followed by a chemical treatment with NaN3 + ItBr for 30 min or 80 min (UV120 + CH30 or UV120 + CH80). A mixture of all the A. niger strains (MIX) was also tested. A citrate buffer, at 50 mM, wasthe most suitable for enzymatic hydrolysis. As the UV exposure time increased to 2 h, the cellulase activity of the surviving culturewas increased (r = 0.706; p < 0.05). The enzymatic activities of the obtained strains, towards miscanthus cellulose, wood chips, and filter paper, were inferior to those obtained with commercial enzymes (8.6 versus 9.1 IU), in some cases. Under stationary hydrolysis at 37 °C, pH = 4.7, the enzymatic activity of A. niger UV120 + CH30 was 24.9 IU. The enzymatic hydrolysis of secondary raw materials, using treated A. niger strains, was themost effective at 37 °C. Similarly, the most effective treatment of miscanthus cellulose and wood chips occurred at 50 °C. The maximum conversion of cellulose to glucose was observed using miscanthus cellulose (with alkaline pretreatment), and the minimum conversion was observed when using wood chips. The greatest value of cellulase activity was evidenced in the starch-containing raw materials, indicating that A. niger can ferment not only through cellulase activity, but also via an amylolytic one.


2021 ◽  
Vol 67 (1) ◽  
Author(s):  
Monika Aniszewska ◽  
Krzysztof Słowiński ◽  
Ewa Tulska ◽  
Witold Zychowicz

AbstractThe paper proposes the use of microwave irradiation to lower the initial moisture content of wood chips. The study involved willow and fir chips fractionated by means of a sieve separator and unfractionated ash chips. The wood chips were exposed to a constant microwave power of 800 W for 30 s, 60 s, 120 s and 180 s. The chips were weighed before and after irradiation to measure loss of moisture. It was found that the decline in moisture content increased with wood chip size for a given irradiation time and microwave power. The initial moisture content of wood chips was not found to significantly affect loss of moisture as the drying rates of wood chips with higher and lower moisture content exposed to microwaves were not statistically different. The results showed that irradiation intensity increased with the time of exposure to microwaves and unit radiant energy per unit of evaporated moisture decreased with increasing wood chip size in the 3.15–31.50 mm range.


Biochar ◽  
2021 ◽  
Author(s):  
Carlos Rodriguez-Franco ◽  
Deborah S. Page-Dumroese

AbstractThere are thousands of abandoned mine land (AML) sites in the U.S. that need to be restored to reduce wind and water erosion, provide wildlife forage, shade streams, and improve productivity. Biochar created from woody biomass that would normally be burned in slash piles can be applied to soil to improve soil properties and is one method to restore AML soil productive capacity. Using this ‘waste’ biomass for biochar and reclamation activities will reduce wildfire risk, air pollution from burning, and particulates released from burning wood. Biochar has the potential to improve water quality, bind heavy metals, or decrease toxic chemical concentrations, while improving soil health to establish sustainable plant cover, thereby preventing soil erosion, leaching, or other unintended, negative environmental consequences. Using forest residues to create biochar also helps reduce woody biomass and improves forest health and resilience. We address concerns surrounding organic and inorganic contaminants on the biochar and how this might affect its’ efficacy and provide valuable information to increase restoration activities on AMLs using biochar alone or in combination with other organic amendments. Several examples of AML biochar restoration sites initiated to evaluate short- and long-term above- and belowground ecosystem responses are presented.


2008 ◽  
Vol 146 (6) ◽  
pp. 677-687 ◽  
Author(s):  
J. F. HERENCIA ◽  
J. C. RUIZ ◽  
S. MELERO ◽  
P. A. GARCIA GALAVÍS ◽  
C. MAQUEDA

SUMMARYThe transition from conventional to organic farming is accompanied by changes in soil chemical properties and processes that could affect soil fertility. The organic system is very complex and the present work carries out a short-term comparison of the effects of organic and conventional agriculture on the chemical properties of a silty loam soil (Xerofluvent) located in the Guadalquivir River Valley, Seville, Spain, through a succession of five crop cycles over a 3-year period. Crop rotation and varieties were compared in a conventional system using inorganic fertilizer and two organic systems using either plant compost or manure. At the end of the study, organic farming management resulted in higher soil organic carbon (OC), N and available P, K, Fe and Zn. The available Mn and especially Cu values did not show significant differences. In general, treatment with manure resulted in more rapid increases in soil nutrient values than did plant compost, which had an effect on several crop cycles later. The present study demonstrated that the use of organic composts results in an increase in OC and the storage of nutrients, which can provide long-term fertility benefits. Nevertheless, at least 2–3 years of organic management are necessary, depending on compost characteristics, to observe significant differences. Average crop yields were 23% lower in organic crops. Nevertheless, only two crops showed statistically significant differences.


Polymers ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 1939
Author(s):  
Helyati Abu Hassan Shaari ◽  
Muhammad Mahyiddin Ramli ◽  
Mohd Nazim Mohtar ◽  
Norizah Abdul Rahman ◽  
Azizan Ahmad

Poly(methyl methacrylate) (PMMA) is a lightweight insulating polymer that possesses good mechanical stability. On the other hand, polyaniline (PANi) is one of the most favorable conducting materials to be used, as it is easily synthesized, cost-effective, and has good conductivity. However, most organic solvents have restricted potential applications due to poor mechanical properties and dispersibility. Compared to PANi, PMMA has more outstanding physical and chemical properties, such as good dimensional stability and better molecular interactions between the monomers. To date, many research studies have focused on incorporating PANi into PMMA. In this review, the properties and suitability of PANi as a conducting material are briefly reviewed. The major parts of this paper reviewed different approaches to incorporating PANi into PMMA, as well as evaluating the modifications to improve its conductivity. Finally, the polymerization condition to prepare PMMA/PANi copolymer to improve its conductivity is also discussed.


Sensors ◽  
2021 ◽  
Vol 21 (10) ◽  
pp. 3494
Author(s):  
Jakub Lev ◽  
Václav Křepčík ◽  
Egidijus Šarauskis ◽  
František Kumhála

Moisture content is one of the most important parameters related to the quality of wood chips that affects both the calorific and economic value of fuel chips. For industrial applications, moisture content needs to be detected quickly. For this purpose, various indirect moisture content measurement methods (e.g., capacitance, NIR, microwave, ECT, X-ray CT, and nuclear MR) have been investigated with different results in the past. Nevertheless, determining wood chip moisture content in real time is still a challenge. The main aim of this article was therefore to analyze the dielectric properties of wood chips at low frequencies (10 kHz–5 MHz) and to examine the possibility of using these properties to predict wood chip moisture content and porosity. A container-type probe was developed for this purpose. The electrical capacitance and dissipation factor of wood chips with different moisture content was measured by an LCR meter at 10 kHz, 50 kHz, 100 kHz, 500 kHz, 1 MHz, and 5 MHz frequencies. Wood chip porosity was also measured using a gas displacement method. Linear models for moisture content and porosity prediction were determined by backward stepwise linear regression. Mathematical model was developed to better understand the physical relationships between moisture content, porosity, and electrical capacitance. These models were able to predict the moisture content of observed quantities of wood chips with the required accuracy (R2 = 0.9−0.99). This finding opens another path to measuring the moisture content and porosity of wood chips in a relatively cheap and fast way and with adequate precision. In addition, principal component analysis showed that it is also possible to distinguish between individual wood chip fraction sizes from the information obtained.


Sign in / Sign up

Export Citation Format

Share Document