scholarly journals Moringa oleifera: a promising agricultural crop and of social inclusion for Brazil and semi-arid regions for the production of energetic biomass (biodiesel and briquettes)

OCL ◽  
2017 ◽  
Vol 25 (1) ◽  
pp. D106 ◽  
Author(s):  
Francisco Sávio Gomes Pereira ◽  
Antonio Demóstenes de Sobral ◽  
Ana Maria Ribeiro Bastos da Silva ◽  
Maria Aparecida Guilherme da Rocha

This study describes properties of biomasses of Moringa oleifera Lamarck for energetic applications of production of biodiesel and briquettes. The seeds collected of the mature pods were the initial biomasses used of this plant. The seeds were separated into husks and oilseed grains, from which the oils were extracted by mechanical pressing and by solvent extraction. The crude oil mixed (of pressing and by solvent) was degummed, neutralized, washed, dried and characterized. The purified oil was converted into methyl biodiesel in homogeneous alkaline transesterification, which was purified and characterized. The residual peels and pies had their calorific powers measured and compared with classic agricultural residues: firewood, sugarcane bagasse and coconut husks. Moringa culture was compared to soybeans in agricultural and biodiesel production perspectives. The analytical results show that the biomasses of the moringa are favorable as renewable biofuels like biodiesel or briquettes due to the good calorific power and simple and accessible productive technology. The production of briquettes starting from the biomasses of the moringa would be recommended with the uses of the pod husks, seed peels and pies (cakes) of extraction of the oil. The agricultural management and the simple productive technologies applied to the moringa are favorable for social inclusion by enabling family agriculture.

Water ◽  
2019 ◽  
Vol 12 (1) ◽  
pp. 57 ◽  
Author(s):  
Francisco Gonçalo Filho ◽  
Nildo da Silva Dias ◽  
Stella Ribeiro Prazeres Suddarth ◽  
Jorge F. S. Ferreira ◽  
Ray G. Anderson ◽  
...  

Saline-sodic soils are a major impediment for agricultural production in semi-arid regions. Salinity and sodicity drastically reduce agricultural crop yields, damage farm equipment, jeopardize food security, and render soils unusable for agriculture. However, many farmers in developing semi-arid regions cannot afford expensive amendments to reclaim saline-sodic soils. Furthermore, existing research does not cover soil types (e.g., Luvisols and Lixisols) that are found in many semi-arid regions of South America. Therefore, we used percolation columns to evaluate the effect of inexpensive chemical and organic amendments (gypsum and cow manure) on the reclamation of saline-sodic soils in the northeast of Brazil. Soil samples from two layers (0–20 cm and 20–40 cm in depth) were collected and placed in percolation columns. Then, we applied gypsum into the columns, with and without cow manure. The experiment followed a complete randomized design with three replications. The chemical amendment treatments included a control and four combinations of gypsum and cow manure. Percolation columns were subjected to a constant flood layer of 55 mm. We evaluated the effectiveness of sodic soil reclamation treatments via changes in soil hydraulic conductivity, chemical composition (cations and anions), electrical conductivity of the saturated soil-paste extract, pH, and the exchangeable sodium percentage. These results suggest that the combined use of gypsum and cow manure is better to reduce soil sodicity, improve soil chemical properties, and increase water infiltration than gypsum alone. Cow manure at 40 ton ha−1 was better than at 80 ton ha−1 to reduce the sodium adsorption ratio.


2015 ◽  
Vol 7 (2) ◽  
pp. 177 ◽  
Author(s):  
Francisco Pereira ◽  
Ana Silva ◽  
Chesque Galvão ◽  
Valmir Lima ◽  
Lucas Montenegro ◽  
...  

This work investigated the biomasses (seeds, seed husks, oilseed grains, crude and purified oils, cakes by pressing and by hexane extraction and methyl biodiesel the oil) of Moringa oleifera Lamarck, starting with its seedpods (ripe and dry fruits) in energetic application. The oil obtained from the grains by mechanical pressing had an average yield of 11.36% and of 36.48% by hexane extraction. The moringa biomasses presented calorific values between 15.87 and 37.53 MJ/kg, being suitable as renewable biofuels. The mixed crude oil (1:4) was refined in four steps: degumming, neutralization, washing and drying. The crude and refined oils were characterised by acidity index, peroxide index, water content, turbidity, specific mass, kinematic viscosity, power calorific higher, calorific power below and ash content. The crude oils by pressing and by solvent extraction were characterised through of the saponification index and iodine value. The purified biodiesel presented specific mass of 889 kg/m3 (20 oC), kinematic viscosity of 5.5 m2/s (40 oC), content of ester of 86.2% and 98.23% (in microscale, ratifying the viability of the method), acidity index of 0.43 mg KOH/g and water content of 615.8 mg/kg. The solid moringa biomasses (seeds, cakes (or pies) and the seed husks) show high potential for the production of briquettes or ecological firewood due to its content energy expressed as lower calorific value (between 15.87 and 23.31 MJ/kg) and simple and accessible technological production. The results show that moringa is an easily exploitable plant in sustainable energy, especially from its seedpods and seeds.


Agronomy ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 562 ◽  
Author(s):  
Richard H. Lohaus ◽  
Dhurba Neupane ◽  
Mitiku A. Mengistu ◽  
Juan K.Q. Solomon ◽  
John C. Cushman

Camelina sativa is a promising oilseed crop used for dietary oil and as a biofuel feedstock. C. sativa is a highly adaptable, cool season crop that can be grown on marginal lands with minimal inputs, making it potentially suitable for growth in Northern Nevada and other cooler and drier semi-arid regions of North America. A five-year (2011 to 2015) field trial was conducted to evaluate the seed yield, oil content, and oil and biodiesel production potential of eight C. sativa cultivars in semi-arid regions of Northern Nevada. Columbia, Cheyenne, Calena, and Blaine Creek were ranked as the top four varieties based on the five-year study of mean seed yield, oil content, and estimated oil and biodiesel production values, although none of the cultivars were significant (p > 0.05). Overall, Columbia displayed the highest seed yield, harvest index, oil yield and potential biodiesel production of 910 kg ha−1, 0.147, 273.4 kg ha−1, and 86.4 L ha−1, respectively, across five growing seasons. For each individual year across the eight cultivars, seed yield, oil content, oil and potential biodiesel production was highest in 2015, and lowest in 2012 and 2013 (the drier years). The seed yields of this study fall within the ranges of yields reported in both the irrigated and rainfed locations of the Western United States. Based on the seed yield, oil, and the estimated oil and biodiesel productivity reported in this study, C. sativa can be grown successfully with supplemental irrigation in semi-arid environments like Nevada.


2020 ◽  
Vol 76 (11) ◽  
Author(s):  
Senni Rachida ◽  
De Belair Gerard ◽  
Abdelkrim Hacene
Keyword(s):  

1987 ◽  
Vol 19 (9) ◽  
pp. 97-106
Author(s):  
J. J. Vasconcelos

Hater resource managers in semi-arid regions are faced with some unique problems. The wide variations in precipitation and stream flows in semi-arid regions increase man's dependence on the ground water resource for an ample and reliable supply of water. Proper management of the ground water resource is absolutely essential to the economic well being of semi-arid regions. Historians have discovered the remains of vanished advanced civilizations based on irrigated agriculture which were ignorant of the importance of proper ground water resource management. In the United States a great deal of effort is presently being expended in the study and control of toxic discharges to the ground water resource. What many public policy makers fail to understand is that the potential loss to society resulting from the mineralization of the ground water resource is potentially much greater than the loss caused by toxic wastes discharges, particularly in developing countries. Appropriations for ground water resource management studies in developed countries such as the United States are presently much less than those for toxic wastes management and should be increased. It is the reponsibility of the water resource professional to emphasize to public policy makers the importance of ground water resource management. Applications of ground water resource management models in the semi-arid Central Valley of California are presented. The results demonstrate the need for proper ground water resource management practices in semi-arid regions and the use of ground water management models as a valuable tool for the water resource manager.


Author(s):  
Mohammad Abdul Kader ◽  
Ashutus Singha ◽  
Mili Amena Begum ◽  
Arif Jewel ◽  
Ferdous Hossain Khan ◽  
...  

Abstract Agricultural water resources have been limited over the years due to global warming and irregular rainfall in the arid and semi-arid regions. To mitigate the water stress in agriculture, mulching has a crucial impact as a water-saving technique in rain-fed crop cultivation. It is important mainly for preserving soil moisture, relegating soil temperature, and limiting soil evaporation, which affects the crop yield. Mulching has many strategic effects on soil ecosystem, crop growth, and climate. Mulch insulates the soil, helping to provide a buffer from cold and hot temperatures that have a crucial activity in creating beautiful and protected landscapes. This study has accumulated a series of information about both organic and plastic mulch materials and its applicability on crop cultivation. Moreover, future research potentials of mulching with modeling were discussed to quantify water loss in agriculture.


Sign in / Sign up

Export Citation Format

Share Document