scholarly journals Impact of Disdrometer Types on Rainfall Erosivity Estimation

Water ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 963
Author(s):  
Lisbeth Lolk Johannsen ◽  
Nives Zambon ◽  
Peter Strauss ◽  
Tomas Dostal ◽  
Martin Neumann ◽  
...  

Soil erosion by water is affected by the rainfall erosivity, which controls the initial detachment and mobilization of soil particles. Rainfall erosivity is expressed through the rainfall intensity (I) and the rainfall kinetic energy (KE). KE–I relationships are an important tool for rainfall erosivity estimation, when direct measurement of KE is not possible. However, the rainfall erosivity estimation varies depending on the chosen KE–I relationship, as the development of KE–I relationships is affected by the measurement method, geographical rainfall patterns and data handling. This study investigated how the development of KE–I relationships and rainfall erosivity estimation is affected by the use of different disdrometer types. Rainfall data were collected in 1-min intervals from six optical disdrometers at three measurement sites in Austria, one site in Czech Republic and one site in New Zealand. The disdrometers included two disdrometers of each of the following types: the PWS100 Present Weather Sensor from Campbell Scientific, the Laser Precipitation Monitor from Thies Clima and the first generation Parsivel from OTT Hydromet. The fit of KE–I relationships from the literature varied among disdrometers and sites. Drop size and velocity distributions and developed KE–I relationships were device-specific and showed similarities for disdrometers of the same type across measurement sites. This hindered direct comparison of results from different types of disdrometers, even when placed at the same site. Thus, to discern spatial differences in rainfall characteristics the same type of measurement instrument should be used.

2016 ◽  
Author(s):  
P. I. A. Kinnell

Abstract. Conceptually, rain has a capacity to cause erosion (rainfall erosivity) and soils have a susceptibility to erosion by rainfall (soil erodibility) but no absolute measure of rainfall erosivity exists. Consequently, soil erodibility is nothing more than an empirical coefficient in the relationship between an index of rainfall erosivity and soil loss. Erosion by rain-impacted flow is influenced by the size, velocity and impact frequency of the raindrops but also flow depth and velocity. Experiments with artificial rainfall falling on sloping surfaces in the field usually do not enable flow depth and velocity to be well measured or controlled. Also, sprays produce artificial rainfall where the spatial uniformity in rainfall intensity, drop size and frequency is often less than desirable. Artificial rainfall produced by pendant drop formers can produce rainfall that has better spatial uniformity. Equipment for controlling flow depth and velocity over eroding surfaces has been developed and used to calibrate the effect of flow depth on the discharge of sediment by rain-impacted flow using artificial rainfall having a uniform drop-size distribution under laboratory conditions. Once calibrated, laboratory experiments can be conducted to rank soils according to their susceptibility to erosion under the flows impacted by the artificial rainfall under conditions where the erosive stress applied to the eroding surface is well controlled.


2012 ◽  
Vol 452-453 ◽  
pp. 316-320 ◽  
Author(s):  
Andrea Alaimo ◽  
Mauro De Marchis ◽  
Gabriele Freni ◽  
Antonio Messineo ◽  
Dario Ticali

Rainfall is the main driver of several natural phenomena having a large impact on human activities. Its monitoring is then very important for natural disaster prevention and for the preservation of the environment. One important phenomenon is related to soil displacement due to rainfall impact. The intensity of physical soil degradation, detachment and transport of soil particles by raindrop splash and interrill erosion is largely controlled by rainfall characteristics. There is still a lot of debate as to whichparameter expresses the best rainfall erosivity. Due to the limited data ondrop-size distribution of natural rainfall and the time consuming nature of methods to obtain these data, rain erosivity parameters are commonly obtained from empirical relationships based on rainfall intensity. This paper describes an a new pluviometer able to measure several raindrop variables and assess rainfall kinetic energy at the impact with the ground. It enables one to measure drop size and drop velocity in real time and thus any parameter linked to rainfall erosivity. The pluviometer is based on the combination of optical and electrical sensors and it is based on cheap technologies in order to allow the easy distribution of several monitoring station on the analyzed area. A description of the device and of its sensor is presented in the present paper.


2018 ◽  
Vol 13 (No. 4) ◽  
pp. 226-233 ◽  
Author(s):  
Petrů Jan ◽  
Kalibová Jana

Rainfall characteristics such as total amount and rainfall intensity (I) are important inputs in calculating the kinetic energy (KE) of rainfall. Although KE is a crucial indicator of the raindrop potential to disrupt soil aggregates, it is not a routinely measured meteorological parameter. Therefore, KE is derived from easily accessible variables, such as I, in empirical laws. The present study examines whether the equations which had been derived to calculate KE of natural rainfall are suitable for the calculation of KE of simulated rainfall. During the experiment presented in this paper, the measurement of rainfall characteristics was carried out under laboratory conditions using a rainfall simulator. In total, 90 measurements were performed and evaluated to describe the rainfall intensity, drop size distribution and velocity of rain drops using the Thies laser disdrometer. The duration of each measurement of rainfall event was 5 minutes. Drop size and fall velocity were used to calculate KE and to derive a new equation of time-specific kinetic energy (KE<sub>time</sub> – I). When comparing the newly derived equation for KE of simulated rainfall with the six most commonly used equations for KE<sub>time</sub> – I of natural rainfall, KE of simulated rainfall was discovered to be underestimated. The higher the rainfall intensity, the higher the rate of underestimation. KE of natural rainfall derived from theoretical equations exceeded KE of simulated rainfall by 53–83% for I = 30 mm/h and by 119–275% for I = 60 mm/h. The underestimation of KE of simulated rainfall is probably caused by smaller drops formed by the rainfall simulator at higher intensities (94% of all drops were smaller than 1 mm), which is not typical of natural rainfall.


2015 ◽  
Vol 3 (10) ◽  
pp. 6351-6378 ◽  
Author(s):  
M. Yamao ◽  
R. C. Sidle ◽  
T. Gomi ◽  
F. Imaizumi

Abstract. We investigated 184 landslides that occurred in unwelded pyroclastic flow deposits (Shirasu) on southern Kyushu Island, Japan, that included detailed data on the rainfall characteristics and the timing of slope failure. Localized rainfall intensity, antecedent rainfall, and topography affected the hydrologic processes that triggered landslides. Antecedent rainfall (adjusted for evapotranspiration losses) for large (> 200 mm) storms that triggered landslides was much lower than for smaller (≤ 200 mm) storms. Mean storm intensity and antecedent 7 day rainfall (API7) thresholds of > 5 mm h-1 and ≤ 30 mm (or API30 ≤ 60 mm), respectively, were useful to identify landslides triggered by rapid pore water pressure response, especially for shorter (< 20 h) duration events. During smaller storms with lower intensity, landslides are likely affected by a combined increase in soil weight and loss of suction when API30 ≥ 150 mm; simulations indicated that these weight and suction changes due to rainfall accumulation decreased factor of safety in steep Shirasu slopes, but did not necessarily trigger the landslides. All but two of the 21 landslides that plotted below a general rainfall intensity-duration threshold for landslide initiation had API30 values > 235 mm, indicating that they were highly influenced by the combined effects of the accumulated weight of rainfall and loss of suction. Our findings show that both event rainfall characteristics and antecedent conditions affect the hydrogeomorphic processes that trigger different types of landslides in Shirasu. This knowledge and the thresholds we have identified are useful for predicting the occurrence of different types of landslides in Shirasu deposits and improving sediment disaster prevention practices, including real-time warning systems.


2020 ◽  
Author(s):  
Lisbeth Lolk Johannsen ◽  
Nives Zambon ◽  
Peter Strauss ◽  
Tomas Dostal ◽  
Martin Neumann ◽  
...  

&lt;p&gt;Rainfall kinetic energy (KE) is an important indicator for the potential soil loss due to rainfall in erosion risk assessment. Kinetic energy-intensity (I) relationships have been developed as a means to calculate the KE of rainfall, when only the rainfall intensity is known. The direct measurement of KE has been enabled due to the use of disdrometers, which measure the size and velocity of raindrops. Previous measurements have shown that rainfall measurements for the same site differed among disdrometer types. Therefore, the best fitting KE-I relationship is likely dependent on the type of disdrometer. In this study, the influence of the disdrometer-specific drop size and velocity measurements on the formulation of new KE-I relationships as well as the fit of existing equations from literature was investigated. Disdrometer rainfall data was collected in 1-minute intervals from six laser-based disdrometers. Two disdrometers of each of the following three types were compared: the PWS100 Present Weather Sensor from Campbell Scientific, the Laser Precipitation Monitor from Thies Clima and the first generation Parsivel from OTT Hydromet. The disdrometers were set up individually at sites in Austria, Czech Republic and New Zealand. Rainfall was measured between 2014 and 2019 with varying amounts of collected data for each site. The results revealed the inherent differences in drop size and velocity distribution estimation between different types of devices. The same pattern of rainfall drop size and velocity distribution could be seen for disdrometers of the same type despite spatial separation. This indicates that actual spatial differences in rainfall characteristics may be difficult to discern when comparing data from different types of disdrometers. New exponential KE-I relationships based on disdrometer data were formulated for each site and device. To confirm the use of the new KE-I equations, one of the equations was validated using rain gauge data from the same site. The best fit of literature KE-I equation varied among sites and devices. The relationship employed in the Revised Universal Soil Loss Equation (RUSLE) always underestimated KE with a percent bias ranging from -2 to -30 %. This study highlights the differences in disdrometer rainfall kinetic energy measurements and how these influence the formulation and evaluation of KE-I relationships, which are important in rainfall erosivity studies.&lt;/p&gt;


Author(s):  
Petrů Jan ◽  
Kalibová Jana

Rainfall characteristics such as total amount and rainfall intensity (I) are important inputs in calculating the kinetic energy (KE) of rainfall. Although KE is a crucial indicator of the raindrop potential to disrupt soil aggregates, it is not a routinely measured meteorological parameter. Therefore, KE is derived from easily accessible variables, such as I, in empirical laws. The present study examines whether the equations which had been derived to calculate KE of natural rainfall are suitable for the calculation of KE of simulated rainfall. During the experiment presented in this paper, the measurement of rainfall characteristics was carried out under laboratory conditions using a rainfall simulator. In total, 90 measurements were performed and evaluated to describe the rainfall intensity, drop size distribution and velocity of rain drops using the Thies laser disdrometer. The duration of each measurement of rainfall event was 5 minutes. Drop size and fall velocity were used to calculate KE and to derive a new equation of time-specific kinetic energy (KE<sub>time</sub> – I). When comparing the newly derived equation for KE of simulated rainfall with the six most commonly used equations for KE<sub>time</sub> – I of natural rainfall, KE of simulated rainfall was discovered to be underestimated. The higher the rainfall intensity, the higher the rate of underestimation. KE of natural rainfall derived from theoretical equations exceeded KE of simulated rainfall by 53–83% for I = 30 mm/h and by 119–275% for I = 60 mm/h. The underestimation of KE of simulated rainfall is probably caused by smaller drops formed by the rainfall simulator at higher intensities (94% of all drops were smaller than 1 mm), which is not typical of natural rainfall.  


2016 ◽  
Vol 16 (2) ◽  
pp. 617-627 ◽  
Author(s):  
M. Yamao ◽  
R. C. Sidle ◽  
T. Gomi ◽  
F. Imaizumi

Abstract. We investigated 184 landslides that occurred in unwelded pyroclastic flow deposits (Shirasu) on southern Kyushu Island, Japan, that included detailed data on the rainfall characteristics and the timing of slope failure. Localized rainfall intensity, antecedent precipitation index (API), and topography affected the hydrologic processes that triggered landslides. API (adjusted for evapotranspiration losses) for large ( >  200 mm) storms that triggered landslides was much lower than for smaller ( ≤  200 mm) storms. Mean storm intensity and 7-day API (API7) thresholds of  >  5 mmh−1 and  ≤  30 mm (or API30 ≤  60 mm), respectively, were useful to identify landslides triggered by rapid pore water pressure response, especially for shorter ( <  20 h) duration events. During smaller storms with lower intensity, landslides are likely affected by a combined increase in soil weight and loss of suction when API30 ≥  150 mm; simulations indicated that these weight and suction changes due to rainfall accumulation decreased the factor of safety in steep Shirasu slopes, but did not necessarily trigger the landslides. Most of the landslides that were plotted below a general rainfall intensity–duration threshold for landslide initiation occurred during smaller storms with API30 values  >  200 mm, indicating that they were highly influenced by the combined effects of the accumulated weight of rainfall and loss of suction. Our findings show that both event rainfall characteristics and API affect the hydrogeomorphic processes that trigger different types of landslides in Shirasu. This knowledge and the thresholds we have identified are useful for predicting the occurrence of different types of landslides in unwelded Shirasu deposits and improving sediment disaster prevention practices, including real-time warning systems.


2021 ◽  
Vol 10 (7) ◽  
pp. 474
Author(s):  
Bingqing Wang ◽  
Bin Meng ◽  
Juan Wang ◽  
Siyu Chen ◽  
Jian Liu

Social media data contains real-time expressed information, including text and geographical location. As a new data source for crowd behavior research in the era of big data, it can reflect some aspects of the behavior of residents. In this study, a text classification model based on the BERT and Transformers framework was constructed, which was used to classify and extract more than 210,000 residents’ festival activities based on the 1.13 million Sina Weibo (Chinese “Twitter”) data collected from Beijing in 2019 data. On this basis, word frequency statistics, part-of-speech analysis, topic model, sentiment analysis and other methods were used to perceive different types of festival activities and quantitatively analyze the spatial differences of different types of festivals. The results show that traditional culture significantly influences residents’ festivals, reflecting residents’ motivation to participate in festivals and how residents participate in festivals and express their emotions. There are apparent spatial differences among residents in participating in festival activities. The main festival activities are distributed in the central area within the Fifth Ring Road in Beijing. In contrast, expressing feelings during the festival is mainly distributed outside the Fifth Ring Road in Beijing. The research integrates natural language processing technology, topic model analysis, spatial statistical analysis, and other technologies. It can also broaden the application field of social media data, especially text data, which provides a new research paradigm for studying residents’ festival activities and adds residents’ perception of the festival. The research results provide a basis for the design and management of the Chinese festival system.


1950 ◽  
Vol 17 (2) ◽  
pp. 145-153 ◽  
Author(s):  
J. O. Hinze ◽  
H. Milborn

Abstract Liquid, supplied through a stationary tube to the inner part of a rotating cup widening toward a brim, flows viscously in a thin layer toward this brim and is then flung off, all by centrifugal action. The flow within this layer and the disintegration phenomena occurring beyond the brim have been studied, experimentally as well as theoretically. A formula has been derived for the thickness and for the radial velocity of the liquid layer within the cup, which proved to agree reasonably well with experimental results. Three essentially different types of disintegration may take place around and beyond the edge of the cup designated, respectively, by: (a) the state of direct drop formation; (b) the state of ligament formation; and (c) the state of film formation. Which one of these is realized depends upon working conditions. Transition from state (a) into (b), or of state (b) into state (c) is promoted by an increased quantity of supply, an increased angular speed, a decreased diameter of the cup, an increased density, an increased viscosity, and a decreased surface tension of the liquid. The experimental results have been expressed in relationships between relevant dimensionless groups. For the state of ligament formation a semiempirical relationship has been derived between the number of ligaments and dimensionless groups determining the working conditions of the cup. Results of drop-size measurements made for the state of ligament formation as well as for the state of film formation show that atomization by mere rotation of the cup is much more uniform than commonly achieved with pressure atomizers.


1976 ◽  
Vol 35 (2) ◽  
pp. 173-177
Author(s):  
Stuart McRae

We need an alternative model to education that will turn students on to learning. Such a model must recognize the ability each student brings to the learning experience. At the Learning Center for Anthropology at Santa Fe Community College in Gainesville, Florida, a smorgasbord of experiences using different types of media was substituted for the traditional academic menu. Early studies show several definite trends for the multimedia classroom: increased student-teacher contact; increased performance by students who are first generation college participants; decreased course costs per student-hour; and greater individualization of instruction.


Sign in / Sign up

Export Citation Format

Share Document