scholarly journals HEM Impoundment—A Numerical Prediction Tool for the Water Framework Directive Assessment of Impounded River Reaches

Water ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 1045
Author(s):  
Michael Tritthart ◽  
Peter Flödl ◽  
Helmut Habersack ◽  
Christoph Hauer

A novel prediction tool is presented as a component of the Habitat Evaluation Model (HEM), which allows the assessment of the ecological status of impounded water bodies based on environmental factors that were shown in literature to correlate with the abundance of benthic macro-invertebrates. Main model parameters are the observed grain sizes and depth-averaged flow velocities obtained from a hydrodynamic simulation. The tool was tested in three Austrian river reaches. It was found that the river lengths predicted to be ecologically affected by the impoundments were substantially shorter for mean flow conditions than previously assessed when employing a physical mapping approach. The differences disappeared for low discharge conditions. The numerical prediction tool allows us to perform a status assessment for discharge conditions, which are potentially more representative of the annual discharge spectrum than those within the in-situ observable range. This property, thus, bears the potential to facilitate the recommendation of sediment management strategies in impounded river reaches in the future.

1987 ◽  
Vol 52 (8) ◽  
pp. 1888-1904
Author(s):  
Miloslav Hošťálek ◽  
Ivan Fořt

A theoretical model is described of the mean two-dimensional flow of homogeneous charge in a flat-bottomed cylindrical tank with radial baffles and six-blade turbine disc impeller. The model starts from the concept of vorticity transport in the bulk of vortex liquid flow through the mechanism of eddy diffusion characterized by a constant value of turbulent (eddy) viscosity. The result of solution of the equation which is analogous to the Stokes simplification of equations of motion for creeping flow is the description of field of the stream function and of the axial and radial velocity components of mean flow in the whole charge. The results of modelling are compared with the experimental and theoretical data published by different authors, a good qualitative and quantitative agreement being stated. Advantage of the model proposed is a very simple schematization of the system volume necessary to introduce the boundary conditions (only the parts above the impeller plane of symmetry and below it are distinguished), the explicit character of the model with respect to the model parameters (model lucidity, low demands on the capacity of computer), and, in the end, the possibility to modify the given model by changing boundary conditions even for another agitating set-up with radially-axial character of flow.


Water ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 223
Author(s):  
Dāvis Ozoliņš ◽  
Agnija Skuja ◽  
Jolanta Jēkabsone ◽  
Ilga Kokorite ◽  
Andris Avotins ◽  
...  

Highly humic lakes are typical for the boreal zone. These unique ecosystems are characterised as relatively undisturbed habitats with brown water, high acidity, low nutrient content and lack of macrophytes. Current lake assessment methods are not appropriate for ecological assessment of highly humic lakes because of their unique properties and differing human pressures acting on these ecosystems. This study proposes a new approach suitable for the ecological status assessment of highly humic lakes impacted by hydrological modifications. Altogether, 52 macroinvertebrate samples from 15 raised bog lakes were used to develop the method. The studied lakes are located in the raised bogs at the central and eastern parts of Latvia. Altered water level was found as the main threat to the humic lake habitats since no other pressures were established. A multimetric index based on macroinvertebrate abundance, littoral and profundal preferences, Coleoptera taxa richness and the Biological Monitoring Working Party (BMWP) Score is suggested as the most suitable tool to assess the ecological quality of the highly humic lakes.


Energies ◽  
2020 ◽  
Vol 14 (1) ◽  
pp. 72
Author(s):  
Sergiu Spataru ◽  
Peter Hacke ◽  
Dezso Sera

An in-situ method is proposed for monitoring and estimating the power degradation of mc-Si photovoltaic (PV) modules undergoing thermo-mechanical degradation tests that primarily manifest through cell cracking, such as mechanical load tests, thermal cycling and humidity freeze tests. The method is based on in-situ measurement of the module’s dark current-voltage (I-V) characteristic curve during the stress test, as well as initial and final module flash testing on a Sun simulator. The method uses superposition of the dark I-V curve with final flash test module short-circuit current to account for shunt and junction recombination losses, as well as series resistance estimation from the in-situ measured dark I-Vs and final flash test measurements. The method is developed based on mc-Si standard modules undergoing several stages of thermo-mechanical stress testing and degradation, for which we investigate the impact of the degradation on the modules light I-V curve parameters, and equivalent solar cell model parameters. Experimental validation of the method on the modules tested shows good agreement between the in-situ estimated power degradation and the flash test measured power loss of the modules, of up to 4.31 % error (RMSE), as the modules experience primarily junction defect recombination and increased series resistance losses. However, the application of the method will be limited for modules experiencing extensive photo-current degradation or delamination, which are not well reflected in the dark I-V characteristic of the PV module.


2021 ◽  
Vol 13 (10) ◽  
pp. 1865
Author(s):  
Gabriel Calassou ◽  
Pierre-Yves Foucher ◽  
Jean-François Léon

Stack emissions from the industrial sector are a subject of concern for air quality. However, the characterization of the stack emission plume properties from in situ observations remains a challenging task. This paper focuses on the characterization of the aerosol properties of a steel plant stack plume through the use of hyperspectral (HS) airborne remote sensing imagery. We propose a new method, based on the combination of HS airborne acquisition and surface reflectance imagery derived from the Sentinel-2 Multi-Spectral Instrument (MSI). The proposed method detects the plume footprint and estimates the surface reflectance under the plume, the aerosol optical thickness (AOT), and the modal radius of the plume. Hyperspectral surface reflectances are estimated using the coupled non-negative matrix factorization (CNMF) method combining HS and MSI data. The CNMF reduces the error associated with estimating the surface reflectance below the plume, particularly for heterogeneous classes. The AOT and modal radius are retrieved using an optimal estimation method (OEM), based on the forward model and allowing for uncertainties in the observations and in the model parameters. The a priori state vector is provided by a sequential method using the root mean square error (RMSE) metric, which outperforms the previously used cluster tuned matched filter (CTMF). The OEM degrees of freedom are then analysed, in order to refine the mask plume and to enhance the quality of the retrieval. The retrieved mean radii of aerosol particles in the plume is 0.125 μμm, with an uncertainty of 0.05 μμm. These results are close to the ultra-fine mode (modal radius around 0.1 μμm) observed from in situ measurements within metallurgical plant plumes from previous studies. The retrieved AOT values vary between 0.07 (near the source point) and 0.01, with uncertainties of 0.005 for the darkest surfaces and above 0.010 for the brightest surfaces.


2021 ◽  
Vol 73 (1) ◽  
Author(s):  
Chunming Huang ◽  
Wei Li ◽  
Shaodong Zhang ◽  
Gang Chen ◽  
Kaiming Huang ◽  
...  

AbstractThe eastward- and westward-traveling 10-day waves with zonal wavenumbers up to 6 from surface to the middle mesosphere during the recent 12 years from 2007 to 2018 are deduced from MERRA-2 data. On the basis of climatology study, the westward-propagating wave with zonal wave number 1 (W1) and eastward-propagating waves with zonal wave numbers 1 (E1) and 2 (E2) are identified as the dominant traveling ones. They are all active at mid- and high-latitudes above the troposphere and display notable month-to-month variations. The W1 and E2 waves are strong in the NH from December to March and in the SH from June to October, respectively, while the E1 wave is active in the SH from August to October and also in the NH from December to February. Further case study on E1 and E2 waves shows that their latitude–altitude structures are dependent on the transmission condition of the background atmosphere. The presence of these two waves in the stratosphere and mesosphere might have originated from the downward-propagating wave excited in the mesosphere by the mean flow instability, the upward-propagating wave from the troposphere, and/or in situ excited wave in the stratosphere. The two eastward waves can exert strong zonal forcing on the mean flow in the stratosphere and mesosphere in specific periods. Compared with E2 wave, the dramatic forcing from the E1 waves is located in the poleward regions.


2000 ◽  
Vol 663 ◽  
Author(s):  
J. Samper ◽  
R. Juncosa ◽  
V. Navarro ◽  
J. Delgado ◽  
L. Montenegro ◽  
...  

ABSTRACTFEBEX (Full-scale Engineered Barrier EXperiment) is a demonstration and research project dealing with the bentonite engineered barrier designed for sealing and containment of waste in a high level radioactive waste repository (HLWR). It includes two main experiments: an situ full-scale test performed at Grimsel (GTS) and a mock-up test operating since February 1997 at CIEMAT facilities in Madrid (Spain) [1,2,3]. One of the objectives of FEBEX is the development and testing of conceptual and numerical models for the thermal, hydrodynamic, and geochemical (THG) processes expected to take place in engineered clay barriers. A significant improvement in coupled THG modeling of the clay barrier has been achieved both in terms of a better understanding of THG processes and more sophisticated THG computer codes. The ability of these models to reproduce the observed THG patterns in a wide range of THG conditions enhances the confidence in their prediction capabilities. Numerical THG models of heating and hydration experiments performed on small-scale lab cells provide excellent results for temperatures, water inflow and final water content in the cells [3]. Calculated concentrations at the end of the experiments reproduce most of the patterns of measured data. In general, the fit of concentrations of dissolved species is better than that of exchanged cations. These models were later used to simulate the evolution of the large-scale experiments (in situ and mock-up). Some thermo-hydrodynamic hypotheses and bentonite parameters were slightly revised during TH calibration of the mock-up test. The results of the reference model reproduce simultaneously the observed water inflows and bentonite temperatures and relative humidities. Although the model is highly sensitive to one-at-a-time variations in model parameters, the possibility of parameter combinations leading to similar fits cannot be precluded. The TH model of the “in situ” test is based on the same bentonite TH parameters and assumptions as for the “mock-up” test. Granite parameters were slightly modified during the calibration process in order to reproduce the observed thermal and hydrodynamic evolution. The reference model captures properly relative humidities and temperatures in the bentonite [3]. It also reproduces the observed spatial distribution of water pressures and temperatures in the granite. Once calibrated the TH aspects of the model, predictions of the THG evolution of both tests were performed. Data from the dismantling of the in situ test, which is planned for the summer of 2001, will provide a unique opportunity to test and validate current THG models of the EBS.


2021 ◽  
Vol 130 ◽  
pp. 108105
Author(s):  
Mónika Duleba ◽  
Angéla Földi ◽  
Adrienn Micsinai ◽  
Gábor Várbíró ◽  
Anita Mohr ◽  
...  

Author(s):  
Anja Bluth ◽  
Axel Schindelhauer ◽  
Katharina Nitzsche ◽  
Pauline Wimberger ◽  
Cahit Birdir

Abstract Purpose Placenta accreta spectrum (PAS) disorders can cause major intrapartum haemorrhage. The optimal management approach is not yet defined. We analysed available cases from a tertiary perinatal centre to compare the outcome of different individual management strategies. Methods A monocentric retrospective analysis was performed in patients with clinically confirmed diagnosis of PAS between 07/2012 and 12/2019. Electronic patient and ultrasound databases were examined for perinatal findings, peripartum morbidity including blood loss and management approaches such as (1) vaginal delivery and curettage, (2) caesarean section with placental removal versus left in situ and (3) planned, immediate or delayed hysterectomy. Results 46 cases were identified with an incidence of 2.49 per 1000 births. Median diagnosis of placenta accreta (56%), increta (39%) or percreta (4%) was made in 35 weeks of gestation. Prenatal detection rate was 33% for all cases and 78% for placenta increta. 33% showed an association with placenta praevia, 41% with previous caesarean section and 52% with previous curettage. Caesarean section rate was 65% and hysterectomy rate 39%. In 9% of the cases, the placenta primarily remained in situ. 54% of patients required blood transfusion. Blood loss did not differ between cases with versus without prenatal diagnosis (p = 0.327). In known cases, an attempt to remove the placenta did not show impact on blood loss (p = 0.417). Conclusion PAS should be managed in an optimal setting and with a well-coordinated team. Experience with different approaches should be proven in prospective multicentre studies to prepare recommendations for expected and unexpected need for management.


Sign in / Sign up

Export Citation Format

Share Document