scholarly journals Removal of Pb2+ from Aqueous Solutions Using K-Type Zeolite Synthesized from Coal Fly Ash

Water ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 2375
Author(s):  
Yuhei Kobayashi ◽  
Fumihiko Ogata ◽  
Chalermpong Saenjum ◽  
Takehiro Nakamura ◽  
Naohito Kawasaki

In this study, a novel zeolite (K-type zeolite) was synthesized from coal fly ash (FA), and adsorption capacity on Pb2+ was assessed. Six types of zeolite (FA1, FA3, FA6, FA12, FA24, and FA48) were prepared, and their physicochemical properties, such as surface functional groups, cation exchange capacity, pHpzc, specific surface area, and pore volume, were evaluated. The quantity of Pb2+ adsorbed by the prepared zeolites followed the order FA < FA1 < FA3 < FA6 < FA12 < FA24 < FA48. Current results indicate that the level of Pb2+ adsorbed was strongly related to the surface characteristics of the adsorbent. Additionally, the correlation coefficient between the amounts of Pb2+ adsorbed and K+ released from FA48 was 0.958. Thus, ion exchange with K+ in the interlayer of FA48 is critical for the removal of Pb2+ from aqueous media. The new binding energies of Pb(4f) at 135 and 140 eV were detected after adsorption. Moreover, FA48 showed selectivity for Pb2+ adsorption in binary solution systems containing cations. The results revealed that FA48 could be useful for removing Pb2+ from aqueous media.

2018 ◽  
Vol 271 ◽  
pp. 1-8 ◽  
Author(s):  
Ulambayar Rentsenorov ◽  
Batmunkh Davaabal ◽  
Jadambaa Temuujin

Raw coal fly ash and acid pretreated fly ash were used to synthesize A-type zeolite by hydrothermal treatment. In order to synthesize zeolite A an aqueous gel having a molar batch composition of Na2O:Al2O3:1.926SiO2:128H2O was utilized. Fly ash and zeolitic products were characterized by SEM, XRF, XRD and cation exchange capacity (CEC). After hydrothermal treatment, several types of zeolites were formed: zeolite A, analcime, faujasite and hydroxy-sodalite. The highest content of zeolite A was formed in the mixture treated at 80°C for 8 hours. CEC values of the zeolitic products were 28-38 times higher than that of in raw fly ash. Acid pretreatment which leads to low calcium and iron content is preferable method for processing of fly ash for the zeolite synthesis. Synthesized zeolite can be used for ion exchangers for water treatment.


2021 ◽  
Vol 2 (1) ◽  
pp. 53-59
Author(s):  
A. Korpa ◽  
V. Teneqja ◽  
S. Gjyli ◽  
A. Andoni

This paper summarizes the investigation results on the main parameters affecting the synthesis of type X and A zeolites using coal silicious fly ash (FA) as raw material. The synthesis was performed by dissolution of alkali-fused alumino-silicates, followed by hydrothermal treatment. The experimental data confirm that fly ash SiO2/Al2O3 ratio, NaOH/FA ratio, acid treatment of pre-fused fly ash, salinity of solution have a significant effect on type and properties of newly formed zeolites. In summary, the results show that A and X-type zeolite form with FA SiO2/Al2O3 ratio < 1.12 and > 1.86, respectively. Moreover, FA characterized by SiO2/Al2O3 mole ratio of 3.15 is suitable for X-type zeolite synthesis while A-type zeolite does not form without NaAlO2 addition. The crystallization occurs faster at higher temperatures although above 90°C X-type zeolite evolves into more stable phases whereas increasing the crystallization time from 1 to 72 hours, the yield of the synthetic products enhances from 60 to 75%. The use of seawater is responsible for the synthesis of X-type showing both lower purity and specific surface area. However, the synthetic products are characterized by high exchange capacity (> 320 meq/100 g), thus suggesting their successful application as adsorbents and catalysts in different types of wastewater and industrial waste treatments.


Fuel ◽  
2007 ◽  
Vol 86 (12-13) ◽  
pp. 1811-1821 ◽  
Author(s):  
Roberto Juan ◽  
Susana Hernández ◽  
José Manuel Andrés ◽  
Carmen Ruiz

2014 ◽  
Vol 886 ◽  
pp. 84-87 ◽  
Author(s):  
Ning Wei ◽  
Xiao Lin Wang ◽  
Wei Xiong Guan ◽  
Yi Ge Guo

The purpose of this work is to study a novel zeolite synthesized from coal fly ash that were pretreated by alkaline fusion method. The main characters of the zeolite like mineralogymorphologyspecific surface area (SSA) cation exchange capacity (CEC) and thermal stability were studied during synthesis process. The XRD result showed that the synthesized zeolite was identified as zeolite X. The CEC of the synthesized zeolite was tested to be 195mmol/100g. The specific surface area (SSA) of the zeolite was determined by the nitrogen adsorption method and the SSA of the zeolite were 44.72m2/g.


2021 ◽  
Vol 13 (8) ◽  
pp. 4269
Author(s):  
Yuhei Kobayashi ◽  
Fumihiko Ogata ◽  
Chalermpong Saenjum ◽  
Takehiro Nakamura ◽  
Naohito Kawasaki

The feasibility of using potassium-type zeolite (K-type zeolite) prepared from coal fly ash (CFA) for the removal of Hg2+ from aqueous media and the adsorption/desorption capabilities of various potassium-type zeolites were assessed in this study. Potassium-type zeolite samples were synthesized by hydrothermal treatment of CFA at different intervals (designated CFA, FA1, FA3, FA6, FA12, FA24, and FA48, based on the hours of treatment) using potassium hydroxide solution, and their physicochemical characteristics were evaluated. Additionally, the quantity of Hg2+ adsorbed was in the order CFA, FA1 < FA3 < FA6 < FA12 < FA24 < FA48, in the current experimental design. Therefore, the hydrothermal treatment time is important to enhance the adsorption capability of K-type zeolite. Moreover, the effects of pH, temperature, contact time, and coexistence on the adsorption of Hg2+ were elucidated. In addition, Hg2+ adsorption mechanism using FA48 was demonstrated. Our results indicated that Hg2+ was exchanged with K+ in the interlayer of FA48 (correlation coefficient = 0.946). Finally, adsorbed Hg2+ onto FA48 could be desorbed using a sodium hydroxide solution (desorption percentage was approximately 70%). Our results revealed that FA48 could be a potential adsorbent for the removal of Hg2+ from aqueous media.


2010 ◽  
Vol 7 (4) ◽  
pp. 1200-1205 ◽  
Author(s):  
Parag Solanki ◽  
Vikal Gupta ◽  
Ruchi Kulshrestha

Coal fly ash was used to synthesize X-type zeolite by alkali fusion followed by hydrothermal treatment. Characteristics of the various Fly ash samples were carried out. Coal proximate analysis was done. Batch experiment was carried out for the adsorption of some heavy metal ions on to synthesized Zeolite. The cost of synthesized zeolite was estimated to be almost one-fifth of that of commercial 13X zeolite available in the market.


2020 ◽  
Vol 5 (3) ◽  
pp. 1193-1198
Author(s):  
Henilkumar M. Lankapati ◽  
Dharmesh R. Lathiya ◽  
Lalita Choudhary ◽  
Ajay K. Dalai ◽  
Kalpana C. Maheria

2018 ◽  
Vol 7 (2) ◽  
pp. 798
Author(s):  
I Made Bendiyasa ◽  
D Setiawan ◽  
R. Octaviany

The experimental study of equilibrium of Cadmium (II) adsorbed with fly ash has been performed. The experimental rig was consisted of a 0.5 L three neck flask, a stirrer, a condenser and a thermometer. The rig was immersed in a water bath that was used to control the experimental temperature. The three neck flask was filled with 0.3 L Cadmium solution of a fixed concentration and then 0.3 g of flay ash was put into the flask. Chemical composition of fly ash are as follows (weight %): SiO2 = 54,23; Al2O3 = 25,38; H2O = 2,5; MgO = 1,O; Ca0 = 4,63; Na20 = 0,32; K20 = 0,60; Mn0 = 0,014; Fe2O3 = 6,01; TiO2 = 0,007; P2O5 = 0,042 and loss of ignition (LOI) is 5,26. Cation exchange capacity is 990 meq/kg fly ash. Each run was conducted for 2 hours, and at the end of each experiment Cadmium (II) was analyzed with Atomic Absorbtion Spectrophotometer (AAS). Variables studied were temperature ranging from 303 to 323 K and initial concentration of Cadmium (II) from 7 to 10 mg Cadmium (II) L-1. Experimental data were evaluated with both Langmuir and Freundlich models. It is found that the experimental data is in a good agreement with Langmuir model. Relationships between K for Langmuir and Freundlich and temperature are, respectively, KLangmuir = 2,841066e(-35401,01/RT) and KFreundlich = 4, 75104e(-34403,20/RT) Keywords: fly ash, Langmuir, Freundlich, Cadmium, equilibrium Abstrak Pengambilan Cd(II) dari air limbah simulasi diteliti dengan menggunakan fly ash sebagai adsorben. Tujuan utama penelitian ini adalah mempelajari kesetimbangan adsorpsi Cd(II) dengan fly ash. Disamping itu juga bertujuan untuk mengetahui kapasitas maksimum adsorpsi fly ash. Setiap percobaan dilakukan dalam suatu reaktor batch yang suhunya dipertahankan tetap. Reaktor yang digunakan adalah labu leher tiga dengan volum 0, 5 L yang dilengkapi dengan pengaduk merkuri, pendingin balik, dan termometer. Fly ash dengan berat 0,3 gram dimasukkan ke dalam reaktor yang telah diisi dengan suatu larutan Cadmium dengan volume 0,3 L dan konsentrasi tertentu. Komposisi kimia fly ash adalah (% berat): %): SiO2 = 54,23; Al2O3 = 25,38; H2O = 2,5; MgO = 1,O; Ca0 = 4,63; Na20 = 0,32; K20 = 0,60; Mn0 = 0,014; Fe2O3 = 6,01; TiO2 = 0,007; P2O5 = 0,042 dan berat hilang = 5,26. Fly ash yang dipakai mempunyai nilai kapasitas pertukaran kation (KPK) yang nilainya sama dengan 990 meq/kg fly ash. Setiap percobaan dilakukan selama dua jam, dan kemudian konsentrasi Cd(II) di dalam larutan  dianalisis kadar Cd(II)-nya menggunakan Atomic Absorbtion Spectrophotometer (AAS). Variabel yang dipelajari adalah suhu (T) dan konsentrasi awal (Co) larutan. Kisaran suhu yang diteliti adalah 303 sampai 323 K dan konsentrasi awal (Co) antara 7 sampai 10 mg Cd(11) L-1. Data percobaan dievaluasi dengan model Langmuir dan Freundlich.  Hasil penelitian menunjukkan bahwa adsorpsi Cd(II) dengan fly ash lebih sesuai dengan model Langmuir. Hubungan K untuk Langmuir dan Freundlrich dengan suhu berturut adaIah KLangmuir = 2,841066e(-35401,01/RT) and KFreundlich = 4, 75104e(-34403,20/RT)Kata kunci: fly ash, Langmuir, Freundlich, Cadmium, kesetimbangan


Processes ◽  
2020 ◽  
Vol 8 (7) ◽  
pp. 778 ◽  
Author(s):  
Silviya Boycheva ◽  
Denitza Zgureva ◽  
Simona Miteva ◽  
Ivan Marinov ◽  
Dominika Behunová ◽  
...  

A nanocrystalline zeolite of Na-X type (CFAZ) was synthesized by ultrasonic-assisted double stage fusion-hydrothermal alkaline conversion of lignite coal fly ash. Modified CFAZ with magnetic nanoparticles (MNP-CFAZ) was obtained by adding presynthesized magnetic nanoparticles between the synthesis stages. CFAZs loaded by particles of copper (Cu-CFAZ) and cobalt (Co-CFAZ) oxides were prepared by postsynthesis modification of the parent CFAZ, applying a wet impregnation technique. The parent and modified CFAZs were examined for their phase composition by X-ray diffraction, morphology by scanning electron microscopy, and surface characteristics by N2 physisorption. Comparative studies have been carried out on the adsorption capacity of the starting CFAZ and its derivatives with respect to Cd2+- and Pb2+-ions from aqueous solutions. Adsorption isotherms of Cd2+-ions on the studied samples were plotted and described by the adsorption equations of Langmuir, Freundlich, Langmuir–Freundlich, and Temkin. The best correlation between the experimental and model isotherms for the parent and modified CFAZ was found with the Langmuir linear model, assuming a monolayer adsorption mechanism. Parent and modified CFAZs were also studied as catalysts for heterogeneous thermal Fenton oxidation of methylene blue. At 90 °C, the higher catalytic activity exhibits the nonmodified sample, but with the decrease in temperature to 60 °C, the modified samples are more effective catalysts.


Sign in / Sign up

Export Citation Format

Share Document