scholarly journals Evaluation of the GPM-IMERG Precipitation Product for Flood Modeling in a Semi-Arid Mountainous Basin in Morocco

Water ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 2516 ◽  
Author(s):  
Tarik Saouabe ◽  
El Mahdi El Khalki ◽  
Mohamed El Mehdi Saidi ◽  
Adam Najmi ◽  
Abdessamad Hadri ◽  
...  

A new precipitation dataset is provided since 2014 by the Global Precipitation Measurement (GPM) satellite constellation measurements combined in the Integrated Multi-satellite Retrievals for GPM (IMERG) algorithm. This recent GPM-IMERG dataset provides potentially useful precipitation data for regions with a low density of rain gauges. The main objective of this study is to evaluate the accuracy of the near real-time product (IMERG-E) compared to observed rainfall and its suitability for hydrological modeling over a mountainous watershed in Morocco, the Ghdat located upstream the city of Marrakech. Several statistical indices have been computed and a hydrological model has been driven with IMERG-E rainfall to estimate its suitability to simulate floods during the period from 2011 to 2018. The following results were obtained: (1) Compared to the rain gauge data, satellite precipitation data overestimates rainfall amounts with a relative bias of +35.61% (2) In terms of the precipitation detection capability, the IMERG-E performs better at reproducing the different precipitation statistics at the catchment scale, rather than at the pixel scale (3) The flood events can be simulated with the hydrological model using both the observed and the IMERG-E satellite precipitation data with a Nash–Sutcliffe efficiency coefficient of 0.58 and 0.71, respectively. The results of this study indicate that the GPM-IMERG-E precipitation estimates can be used for flood modeling in semi-arid regions such as Morocco and provide a valuable alternative to ground-based precipitation measurements.

2021 ◽  
Author(s):  
Tarik Saouabe ◽  
El Mahdi El Khalki ◽  
Mohamed El Mehdi Saidi ◽  
Adam Najmi ◽  
Abdessamad Hadri ◽  
...  

<p>Recently, the Global Precipitation Measurement (GPM) satellite constellation measurements combined in the Integrated Multi-satellite Retrievals for GPM (IMERG) algorithm is provided. This GPM-IMERG dataset provides potentially useful precipitation data for regions with a low density of rain gauges. This study is aimed to evaluate the accuracy of the near real-time product (IMERG-E) compared to observed rainfall and its suitability for hydrological modeling over the Ghdat watershed located upstream the city of Marrakech. Several statistical indices have been computed and a hydrological model has been driven with IMERG-E rainfall to estimate its suitability to simulate floods during the period from 2011 to 2018. The following results were obtained: (1) In terms of the precipitation detection capability, the IMERG-E performs better at reproducing the different precipitation statistics at the catchment scale rather than at the pixel scale (2) compared to the rain gauge data, satellite precipitation data overestimates rainfall amounts with a relative Bias of +35.61% (3) The flood events can be simulated with the hydrological model using both the observed and the IMERG-E satellite precipitation data with a Nash–Sutcliffe efficiency coefficient of 0.58 and 0.71, respectively. The results of this study indicate that the GPM-IMERG-E precipitation estimates can be used for flood modeling in semi-arid regions such as Morocco and provide a valuable alternative to ground-based precipitation measurements.</p>


Water ◽  
2018 ◽  
Vol 10 (11) ◽  
pp. 1665 ◽  
Author(s):  
Paweł Gilewski ◽  
Marek Nawalany

Precipitation is one of the essential variables in rainfall-runoff modeling. For hydrological purposes, the most commonly used data sources of precipitation are rain gauges and weather radars. Recently, multi-satellite precipitation estimates have gained importance thanks to the emergence of Integrated Multisatellite Retrievals for Global Precipitation Measurement (IMERG GPM), a successor of a very successful Tropical Rainfall Measuring Mission (TRMM) mission which has been providing high-quality precipitation estimates for almost two decades. Hydrological modeling of mountainous catchment requires reliable precipitation inputs in both time and space as the hydrological response of such a catchment is very quick. This paper presents an inter-comparison of event-based rainfall-runoff simulations using precipitation data originating from three different sources. For semi-distributed modeling of discharge in the mountainous river, the Hydrologic Engineering Center-Hydrologic Modelling System (HEC-HMS) is applied. The model was calibrated and validated for the period 2014–2016 using measurement data from the Upper Skawa catchment a small mountainous catchment in southern Poland. The performance of the model was assessed using the Nash–Sutcliffe efficiency coefficient (NSE), Pearson’s correlation coefficient (r), Percent bias (PBias) and Relative peak flow difference (rPFD). The results show that for the event-based modeling adjusted radar rainfall estimates and IMERG GPM satellite precipitation estimates are the most reliable precipitation data sources. For each source of the precipitation data the model was calibrated separately as the spatial and temporal distributions of rainfall significantly impact the estimated values of model parameters. It has been found that the applied Soil Conservation Service (SCS) Curve Number loss method performs best for flood events having a unimodal time distribution. The analysis of the simulation time-steps indicates that time aggregation of precipitation data from 1 to 2 h (not exceeding the response time of the catchment) provide a significant improvement of flow simulation results for all the models while further aggregation, up to 4 h, seems to be valuable only for model based on rain gauge precipitation data.


2021 ◽  
Author(s):  
Myriam Benkirane ◽  
Nour-Eddine Laftouhi ◽  
Said Khabba ◽  
Bouabid El Mansouri

<p>Accurate measurement of precipitation is very important for flood forecasting, hydrological modeling, and estimation of the water balance of any basin. The lack of a weather monitoring network is an obstacle to the accurate measurement of precipitation.</p><p>In most of the Moroccan High Atlas Mountains regions, ground observation stations are still unreliable and difficult to access due to several parameters, such as a large spatial and temporal variation of rainfall and ruggedness of topography, which lead to irregularity and scarcity of measuring stations. This area is characterized by arid and semi-arid climates where generally occurred a few rainy days but have experienced significant flash floods.</p><p>Consequently, floods are causing extended damages to the population and infrastructures every year. However, research on hydrological processes is limited due to the irregularity of the gauge station network and the large number of gaps frequently observed in the rainfall and runoff data acquired from the gauge stations. Remote sensing precipitation data with high spatial and temporal resolution are a potential alternative to gauged precipitation data.</p><p>This study evaluates the performance of the two satellite products: the Tropical Rainfall Measuring Mission (TRMM 3B43V7) Multi-satellite Precipitation Analysis (TMPA) and the Integrated Multi-satellite Retrievals for GPM (IMERG V06) (SPPs) to observed rainfall, at different time scales (daily, monthly, and annual) from 1 September 2000 to 31 August 2017 over the Ghdat watershed, with different statistical indices and hydrological assessment, to evaluate the reliability of these (SPPs) data to reproduce rainfall events by implementing them in a hydrological model, to determine their ability to detect all types of rainfall events.</p><p>Daily, monthly, and annual rainfall measurements were validated using widely used statistical measures (CC, RMSE, MAE, Bias, Nash, POD, FAR, FBI and ETS).</p><p>The results showed that: (1) The correlation between satellite precipitation data and rainfall precipitation demonstrated a high correlation on all daily, monthly, and annual scales. (2) The product (TRMM 3B42V7) exhibits better quality in terms of correlation on the monthly and annual scale, while the (GPM IMERG V06) product shows a high correlation on the daily scale compared to the measurements of the gauges. (3) The (GPM IMERG V06) product has better performance regarding the precipitation detection capability, compared to the (TRMM 3B42V7) product which could detect only tiny precipitation events, but not able to capture moderate or strong precipitation events. (4) Flood events can be simulated with the hydrological model using both observed precipitation data and satellite data with the Nash – Sutcliffe model efficiency coefficient (NSE) ranging from 0.65 to 0.90.</p><p>According to the results of this study, we concluded that (TRMM 3B42V7) and (GPM IMERG V06) satellite precipitation products can be used for flood modeling and water resource management, particularly in the semi-arid and Mediterranean region.</p>


2020 ◽  
Vol 12 (3) ◽  
pp. 398 ◽  
Author(s):  
Lu ◽  
Tang ◽  
Wang ◽  
Liu ◽  
Wei ◽  
...  

Low accuracy and coarse spatial resolution are the two main drawbacks of satellite precipitation products. Therefore, calibration and downscaling are necessary before these products are applied. This study proposes a two-step framework to improve the accuracy of satellite precipitation estimates. The first step is data merging based on optimum interpolation (OI), and the second step is downscaling based on geographically weighted regression (GWR); therefore, the framework is called OI-GWR. An Integrated Multi-satellitE Retrievals for Global Precipitation Measurement (GPM) (IMERG) product is used to demonstrate the effectiveness of OI-GWR in the Tianshan Mountains, China. First, the original IMERG precipitation data (OIMERG) are merged with rain gauge data using the OI method to produce corrected IMERG precipitation data (CIMERG). Then, using CIMERG as the first guess and the normalized difference vegetation index (NDVI) as the auxiliary variable, GWR is utilized for spatial downscaling. The two-step OI-GWR method is compared with several traditional methods, including GWR downscaling (Ori_GWR) and spline interpolation. The cross-validation results show that (1) the OI method noticeably improves the accuracy of OIMERG, and (2) the 1-km downscaled data obtained using OI-GWR are much better than those obtained from Ori_GWR, spline interpolation, and OIMERG. The proposed OI-GWR method can contribute to the development of high-resolution and high-accuracy regional precipitation datasets. However, it should be noted that the method proposed in this study cannot be applied in regions without any meteorological stations. In addition, further efforts will be needed to achieve daily- or hourly-scale downscaling of precipitation.


2019 ◽  
Vol 11 (2) ◽  
pp. 140 ◽  
Author(s):  
Fei Yuan ◽  
Limin Zhang ◽  
Khin Soe ◽  
Liliang Ren ◽  
Chongxu Zhao ◽  
...  

Tropical Rainfall Measuring Mission (TRMM) and its successor, Global Precipitation Measurement (GPM), have provided hydrologists with important precipitation data sources for hydrological applications in sparsely gauged or ungauged basins. This study proposes a framework for statistical and hydrological assessment of the TRMM- and GPM-era satellite-based precipitation products (SPPs) in both near- and post-real-time versions at sub-daily temporal scales in a poorly gauged watershed in Myanmar. It evaluates six of the latest GPM-era SPPs: Integrated Multi-satellite Retrievals for GPM (IMERG) “Early”, “Late”, and “Final” run SPPs (IMERG-E, IMERG-L, and IMERG-F, respectively), and Global Satellite Mapping of Precipitation (GSMaP) near-real-time (GSMaP-NRT), standard version (GSMaP-MVK), and standard version with gauge-adjustment (GSMaP-GAUGE) SPPs, and two TRMM Multi-satellite Precipitation Analysis SPPs (3B42RT and 3B42V7). Statistical assessment at grid and basin scales shows that 3B42RT generally presents higher quality, followed by IMERG-F and 3B42V7. IMERG-E, IMERG-L, GSMaP-NRT, GSMaP-MVK, and GSMaP-GAUGE largely underestimate total precipitation, and the three GSMaP SPPs have the lowest accuracy. Given that 3B42RT demonstrates the best quality among the evaluated four near-real-time SPPs, 3B42RT obtains satisfactory hydrological performance in 3-hourly flood simulation, with a Nash–Sutcliffe model efficiency coefficient (NSE) of 0.868, and it is comparable with the rain-gauge-based precipitation data (NSE = 0.895). In terms of post-real-time SPPs, IMERG-F and 3B42V7 demonstrate acceptable hydrological utility, and IMERG-F (NSE = 0.840) slightly outperforms 3B42V7 (NSE = 0.828). This study found that IMERG-F demonstrates comparable or even slightly better accuracy in statistical and hydrological evaluations in comparison with its predecessor, 3B42V7, indicating that GPM-era IMERG-F is the reliable replacement for TRMM-era 3B42V7 in the study area. The GPM scientific community still needs to further refine precipitation retrieving algorithms and improve the accuracy of SPPs, particularly IMERG-E, IMERG-L, and GSMaP SPPs, because ungauged basins urgently require accurate and timely precipitation data for flood control and disaster mitigation.


2021 ◽  

<p>Aim of the study is to examine the potential utilization of satellite precipitation data to estimate the peak discharges of flash floods in ungauged Mediterranean watersheds. Cumulative precipitation heights from local rain gauge and the GPM-IMERG were correlated in a scatter plot. The calculated linear equations were used to adjust the uncalibrated GPM-IMERG precipitation data in Thasos island (Northern Greece), to investigate the mechanisms of the flash floods recorded in November 2019 and to evaluate the significance of satellite precipitation data in hydrological modeling. The uncalibrated GPM-IMERG precipitation failed to explain the flash floods phenomena. The rain gauge data are reliable to accurately predict the peak discharges only in cases, where the rain gauges are within the study area. The strong correlation between ground rainfall data and satellite spatiotemporal precipitation data (R2 &gt; 0.65), provides linear regression equations that, through their extrapolation and appliance to the rest of the flooded area, could adjust and correct the satellite data, optimizing the efficiency and accuracy of flash flood analysis, especially in ungauged watersheds. The proposed methodology could highly contribute to the optimization of flood mitigation measures establishment, flood risk assessment, hydrological and hydraulic simulation of flash flood events in ungauged watersheds.</p>


Water ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 3028
Author(s):  
Claudia Bertini ◽  
Luca Buonora ◽  
Elena Ridolfi ◽  
Fabio Russo ◽  
Francesco Napolitano

The estimation of the design peak discharge is crucial for the hydrological design of hydraulic structures. A commonly used approach is to estimate the design storm through the intensity–duration–area–frequency (IDAF) curves and then use it to generate the design discharge through a hydrological model. In ungauged areas, IDAF curves and design discharges are derived throughout regionalization studies, if any exist for the area of interest, or from using the hydrological information of the closest and most similar gauged place. However, many regions around the globe remain ungauged or are very poorly gauged. In this regard, a unique opportunity is provided by satellite precipitation products developed and improved in the last decades. In this paper, we show weaknesses and potentials of satellite data and, for the first time, we evaluate their applicability for design purposes. We employ CMORPH—Climate Prediction Center MORPHing technique satellite precipitation estimates to build IDAF curves and derive the design peak discharges for the Pietrarossa dam catchment in southern Italy. Results are compared with the corresponding one provided by a regionalization study, i.e., VAPI—VAlutazione delle Piene in Italia project, usually used in Italy in ungauged areas. Results show that CMORPH performed well for the estimation of low duration and small return periods storm events, while for high return period storms, further research is still needed.


2016 ◽  
Vol 8 (1) ◽  
pp. 22-31 ◽  
Author(s):  
Sunil Ghaju ◽  
Knut Alfredsen

High spatial variability of precipitation over Nepal demands dense network of rain-gauge stations. But to set-up a dense rain gauge network is almost impossible due to mountainous topography of Nepal. Also the dense rain gauge network will be very expensive and some time impossible for timely maintenance. Satellite precipitation products are an alternative way to collect precipitation data with high temporal and spatial resolution over Nepal. In this study, the satellite precipitation products TRMM and GSMaP were analyzed. Precipitation was compared with ground based gauge precipitation in the Narayani basin, while the applicability of these rainfall products for runoff simulation were tested using the LANDPINE model for Trishuli basin which is a sub-basin within Narayani catchment. The Nash-Sutcliffe efficiency calculated for TRMM and GSMaP from point to pixel comparison is negative for most of stations. Also the estimation bias for both the products is negative indicating under estimation of precipitation by satellite products, with least under estimation for the GSMaP precipitation product. After point to pixel comparison, satellite precipitation estimates were used for runoff simulation in the Trishuli catchment with and without bias correction for each product. Among the two products, TRMM shows good simulation result without any bias correction for calibration and validation period with scaling factor of 2.24 for precipitation which is higher than that for gauge precipitation. This suggests, it could be used for runoff simulation to the catchments where there is no precipitation station. But it is too early to conclude by just looking into one catchment. So extensive study need to be done to make such conclusion.Journal of Hydrology and Meteorology, Vol. 8(1) p.22-31


2020 ◽  
Vol 12 (4) ◽  
pp. 678 ◽  
Author(s):  
Zhi-Weng Chua ◽  
Yuriy Kuleshov ◽  
Andrew Watkins

This study evaluates the U.S. National Oceanographic and Atmospheric Administration’s (NOAA) Climate Prediction Center morphing technique (CMORPH) and the Japan Aerospace Exploration Agency’s (JAXA) Global Satellite Mapping of Precipitation (GSMaP) satellite precipitation estimates over Australia across an 18 year period from 2001 to 2018. The evaluation was performed on a monthly time scale and used both point and gridded rain gauge data as the reference dataset. Overall statistics demonstrated that satellite precipitation estimates did exhibit skill over Australia and that gauge-blending yielded a notable increase in performance. Dependencies of performance on geography, season, and rainfall intensity were also investigated. The skill of satellite precipitation detection was reduced in areas of elevated topography and where cold frontal rainfall was the main precipitation source. Areas where rain gauge coverage was sparse also exhibited reduced skill. In terms of seasons, the performance was relatively similar across the year, with austral summer (DJF) exhibiting slightly better performance. The skill of the satellite precipitation estimates was highly dependent on rainfall intensity. The highest skill was obtained for moderate rainfall amounts (2–4 mm/day). There was an overestimation of low-end rainfall amounts and an underestimation in both the frequency and amount for high-end rainfall. Overall, CMORPH and GSMaP datasets were evaluated as useful sources of satellite precipitation estimates over Australia.


2010 ◽  
Vol 11 (4) ◽  
pp. 966-978 ◽  
Author(s):  
Kenneth J. Tobin ◽  
Marvin E. Bennett

Abstract Significant concern has been expressed regarding the ability of satellite-based precipitation products such as the National Aeronautics and Space Administration (NASA) Tropical Rainfall Measuring Mission (TRMM) Multisatellite Precipitation Analysis (TMPA) 3B42 products (version 6) and the U.S. National Oceanic and Atmospheric Administration (NOAA) Climate Prediction Center’s (CPC) morphing technique (CMORPH) to accurately capture rainfall values over land. Problems exist in terms of bias, false-alarm rate (FAR), and probability of detection (POD), which vary greatly worldwide and over the conterminous United States (CONUS). This paper directly addresses these concerns by developing a methodology that adjusts existing TMPA products utilizing ground-based precipitation data. The approach is not a simple bias adjustment but a three-step process that transforms a satellite precipitation product. Ground-based precipitation is used to develop a filter eliminating FAR in the authors’ adjusted product. The probability distribution function (PDF) of the satellite-based product is adjusted to the PDF of the ground-based product, minimizing bias. Failure of precipitation detection (POD) is addressed by utilizing a ground-based product during these periods in their adjusted product. This methodology has been successfully applied in the hydrological modeling of the San Pedro basin in Arizona for a 3-yr time series, yielding excellent streamflow simulations at a daily time scale. The approach can be applied to any satellite precipitation product (i.e., TRMM 3B42 version 7) and will provide a useful approach to quantifying precipitation in regions with limited ground-based precipitation monitoring.


Sign in / Sign up

Export Citation Format

Share Document