scholarly journals Anthropogenic Modifications and River Ecosystem Services: A Landscape Perspective

Water ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 2706 ◽  
Author(s):  
Anjana Ekka ◽  
Saket Pande ◽  
Yong Jiang ◽  
Pieter van der Zaag

The process of development has led to the modification of river landscapes. This has created imbalances between ecological, economic, and socio-cultural uses of ecosystem services (ESs), threatening the biotic and social integrity of rivers. Anthropogenic modifications influence river landscapes on multiple scales, which impact river-flow regimes and thus the production of river ESs. Despite progress in developing approaches for the valuation ecosystem goods and services, the ecosystem service research fails to acknowledge the biophysical structure of river landscape where ecosystem services are generated. Therefore, the purpose of this review is to synthesize the literature to develop the understanding of the biocomplexity of river landscapes and its importance in ecosystem service research. The review is limited to anthropogenic modifications from catchment to reach scale which includes inter-basin water transfer, change in land-use pattern, sub-surface modifications, groundwater abstractions, stream channelization, dams, and sand mining. Using 86 studies, the paper demonstrates that river ESs largely depend on the effective functioning of biophysical processes, which are linked with the geomorphological, ecological, and hydrological characteristics of river landscapes. Further, the ESs are linked with the economic, ecological, and socio-cultural aspect. The papers show that almost all anthropogenic modifications have positive impact on economic value of ESs. The ecological and socio-cultural values are negatively impacted by anthropogenic modifications such as dams, inter-basin water transfer, change in land-use pattern, and sand mining. The socio-cultural impact of ground-water abstraction and sub-surface modifications are not found in the literature examined here. Further, the ecological and socio-cultural aspects of ecosystem services from stakeholders’ perspective are discussed. We advocate for linking ecosystem service assessment with landscape signatures considering the socio-ecological interactions.

Author(s):  
Yuejuan Yang ◽  
Kun Wang ◽  
Di Liu ◽  
Xinquan Zhao ◽  
Jiangwen Fan ◽  
...  

Being subject to climate change and human intervention, the land-use pattern in the agro-pastoral ecotone of Northern China has undergone complex changes over the past few decades, which may jeopardize the provision of ecosystem services. Thus, for sustainable land management, ecosystem services should be evaluated and monitored. In this study, based on Landsat TM/ETM data, we quantitatively evaluated the losses of ecosystem service values (ESV) in three sections of the agro-pastoral ecotone from 1980–2015. The results were as follows: (1) the main characteristic of the land conversions was that a large area of grassland was converted into cultivated land in the agro-pastoral ecotone; (2) on the spatial scale, the ESV losses of the agro-pastoral ecotone can be called an “inclined surface” in the direction of the northeast to southwest, and the northeastern section of the agro-pastoral ecotone lost more ESV than the middle and northwest sections (p < 0.05), on the temporal scale, the order of losses was 1990–2000 > 1980–1990 > 2000–2015; (3) the agro-pastoral ecotone lost more ESV, which was mainly due to four kinds of land conversion, which were grassland that was transformed into cultivated land, grassland transformed into unused land, grassland transformed into built-up areas, and cultivated land transformed into built-up areas; (4) although these land conversions were curbed after the implementation of protection policies at the end of the 1990s, due to reduced precipitation and increasing temperatures, the agro-pastoral ecotone will face a more severe situation in the future; and, (5) during the period of 1990–2015, the overall dynamic processes of increasing population gradually expanded to the sparsely populated pastoral area. Therefore, we believe that human interventions are the main cause of ecological deterioration in the agro-pastoral ecotone. This study provides references for fully understanding the regional differences in the ecological and environmental effects of land use change and it helps to objectively evaluate ecological civilization construction in the agro-pastoral ecotone of Northern China.


2012 ◽  
Vol 518-523 ◽  
pp. 5116-5120
Author(s):  
Pei Ji Shi ◽  
Xue Bin Zhang ◽  
Jun Luo ◽  
Xue Min Zhang

Based on the detailed survey of land use change in Shiyang river basin, referencing Costanza, and Xie et al’ research results of the value of ecosystem services, this article probed the variation of land use and value of ecosystem service in Wuwei region. The results are: from 1997 to 2006, the area of woodland, construction land and garden land are increasing, while farmland, grassland, water and unused land are continuing to decrease. Land-use intensity is gradually increasing, the land use pattern towards to a centralized style. The values of ecosystem services are overall upward, and change faster than ever. The main part of the value of ecosystem service is constituted by the value of grassland, woodland and farmland. So it’s important to control the expansion of urban construction, strength the protection of the water, restore and enhance regional ecosystem services in the future.


PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e5723 ◽  
Author(s):  
Rashieda Davids ◽  
Mathieu Rouget ◽  
Richard Boon ◽  
Debra Roberts

Background Population growth at all scales and rapid rates of urbanization, particularly in the global South, are placing increasing pressure on ecosystems and their ability to provide services essential for human well-being. The spatial consideration of threats to ecosystem services related to changes in land use is necessary in order to avoid undue impacts on society due to the loss or reduced supply of ecosystem services. This study assesses the potential threats of land use change from strategic and local development proposals to ecosystem services in the city of Durban. Methods We analysed the spatial relationship between five categories of ecosystem service hotspots (carbon storage, water yield, sediment retention, nutrient retention and flood attenuation) and urban land use change related to selected strategic planning proposals, development proposals and sand-mining applications in Durban, South Africa (eThekwini Municipality) with a view to determining the consequences for progress towards a more sustainable development path in the city. We identified the potential levels of threat related to habitat destruction or transformation for the five categories of ecosystem services and a subset of 13 ecosystem service hotspots, using GIS spatial analysis tools. Results The results show that on average, should Durban’s strategic development plans be realised, approximately 42% loss of ecosystem service hotspots is expected in the two municipal town-planning regions assessed. With respect to development applications between 2009 and 2012, approximately 36% of all environmental impact assessments and 84% of sand mining applications occurred within ecosystem service hotspots within Durban. Discussion The findings highlight the tension between short-term development pressures and longer-term sustainability goals and confirm that current planning and development proposals pose a threat to ecosystems and their ability to deliver services that support human well-being in Durban. We suggest practical solutions to include ecosystem services into local government decision-making.


Land ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 501
Author(s):  
Xuege Wang ◽  
Fengqin Yan ◽  
Yinwei Zeng ◽  
Ming Chen ◽  
Bin He ◽  
...  

Extensive urbanization around the world has caused a great loss of farmland, which significantly impacts the ecosystem services provided by farmland. This study investigated the farmland loss due to urbanization in the Guangdong–Hong Kong–Macao Greater Bay Area (GBA) of China from 1980 to 2018 based on multiperiod datasets from the Land Use and Land Cover of China databases. Then, we calculated ecosystem service values (ESVs) of farmland using valuation methods to estimate the ecosystem service variations caused by urbanization in the study area. The results showed that 3711.3 km2 of farmland disappeared because of urbanization, and paddy fields suffered much higher losses than dry farmland. Most of the farmland was converted to urban residential land from 1980 to 2018. In the past 38 years, the ESV of farmland decreased by 5036.7 million yuan due to urbanization, with the highest loss of 2177.5 million yuan from 2000–2010. The hydrological regulation, food production and gas regulation of farmland decreased the most due to urbanization. The top five cities that had the largest total ESV loss of farmland caused by urbanization were Guangzhou, Dongguan, Foshan, Shenzhen and Huizhou. This study revealed that urbanization has increasingly become the dominant reason for farmland loss in the GBA. Our study suggests that governments should increase the construction of ecological cities and attractive countryside to protect farmland and improve the regional ESV.


Land ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 173
Author(s):  
Changjun Gu ◽  
Yili Zhang ◽  
Linshan Liu ◽  
Lanhui Li ◽  
Shicheng Li ◽  
...  

Land use and land cover (LULC) changes are regarded as one of the key drivers of ecosystem services degradation, especially in mountain regions where they may provide various ecosystem services to local livelihoods and surrounding areas. Additionally, ecosystems and habitats extend across political boundaries, causing more difficulties for ecosystem conservation. LULC in the Kailash Sacred Landscape (KSL) has undergone obvious changes over the past four decades; however, the spatiotemporal changes of the LULC across the whole of the KSL are still unclear, as well as the effects of LULC changes on ecosystem service values (ESVs). Thus, in this study we analyzed LULC changes across the whole of the KSL between 2000 and 2015 using Google Earth Engine (GEE) and quantified their impacts on ESVs. The greatest loss in LULC was found in forest cover, which decreased from 5443.20 km2 in 2000 to 5003.37 km2 in 2015 and which mainly occurred in KSL-Nepal. Meanwhile, the largest growth was observed in grassland (increased by 548.46 km2), followed by cropland (increased by 346.90 km2), both of which mainly occurred in KSL-Nepal. Further analysis showed that the expansions of cropland were the major drivers of the forest cover change in the KSL. Furthermore, the conversion of cropland to shrub land indicated that farmland abandonment existed in the KSL during the study period. The observed forest degradation directly influenced the ESV changes in the KSL. The total ESVs in the KSL decreased from 36.53 × 108 USD y−1 in 2000 to 35.35 × 108 USD y−1 in 2015. Meanwhile, the ESVs of the forestry areas decreased by 1.34 × 108 USD y−1. This shows that the decrease of ESVs in forestry was the primary cause to the loss of total ESVs and also of the high elasticity. Our findings show that even small changes to the LULC, especially in forestry areas, are noteworthy as they could induce a strong ESV response.


One Ecosystem ◽  
2020 ◽  
Vol 5 ◽  
Author(s):  
Dirk Vrebos ◽  
Jan Staes ◽  
Steven Broekx ◽  
Leo de Nocker ◽  
Karen Gabriels ◽  
...  

Since the early 2000s, there have been substantial efforts to transform the concept of ecosystem services into practice. Spatial assessment tools are being developed to evaluate the impact of spatial planning on a wide range of ecosystem services. However, the actual implementation in decision-making remains limited. To improve implementation, tools that are tailored to local conditions can provide accurate, meaningful information. Instead of a generic and widely-applicable tool, we developed a regional, spatially-explicit tool (ECOPLAN-SE) to analyse the impact of changes in land use on the delivery of 18 ecosystem services in Flanders (Belgium). The tool incorporates ecosystem services relevant to policy-makers and managers and makes use of detailed local data and knowledge. By providing an easy-to-use tool, including the required spatial geodatasets, time investment and the learning curve remain limited for the user. With this tool, constraints to implement ecosystem service assessments in local decision-making are drastically reduced. We believe that region-specific decision support systems, like ECOPLAN-SE, are indispensable intermediates between the conceptual ecosystem service frameworks and the practical implementation in planning processes.


Author(s):  
Negasi Solomon ◽  
Alcade C. Segnon ◽  
Emiru Birhane

Despite their importance as sources of ecosystem services supporting the livelihoods of millions of people, forest ecosystems have been changing into other land use systems over the past decades across the world. While forest cover change dynamics have been widely documented in various ecological systems, how these changes affect ecosystem service values has received limited attention. In this study we assessed the impact of land-use/land-cover dynamics on ecosystem service values in dry Afromontane forest in Northern Ethiopia. We estimated ecosystem service values and their changes based on the benefit transfer method using land cover data of the years 1985, 2000, and 2016 with their corresponding locally valid value coefficients and from the Ecosystem service valuation database. The total ecosystem service values of the whole study area were about USD 16.6, 19.0, and 18.1 million in 1985, 2000, and 2016, respectively. The analyses indicated an increase in ecosystem service values from 1985 to 2000 and a decrease in ecosystem service values from 2000 to 2016. Similarly, the contribution of specific ecosystem services increased in the first study period and decreased in the second study period. The findings highlight how forest cover dynamics can be translated into changes in ecosystem service values in dry Afromontane forest ecosystems in Northern Ethiopia and showed how specific ecosystem services contributed to the observed trends. The findings also illustrated the temporal heterogeneity in the impacts of land-use/land-cover dynamics on values of ecosystem services. The findings can serve as crucial inputs for policy and strategy formulations for the sustainable use and management of forest resources and can also guide the allocation of limited resources among competing demands to safeguard the ecosystems that offer the best-valued services.


2020 ◽  
pp. 56-72
Author(s):  
Nararuk Boonyanam ◽  
Somskaow Bejranonda

The rapid increase in economic development and urbanisation along the Eastern Economic Corridor (EEC) of Thailand has accelerated the change in its ecosystem service value (ESV), leading to the demand for related analysis to ensure sustainable growth in the area. The aim of this study is to: (1) evaluate the land use change in Chonburi Province; the most urbanised city in the EEC of Thailand between 2006 and 2016, and (2) assess the land use change impact on ESV. Secondary data from land use maps for 2006 and 2016 was used to evaluate land use change and its impact on ESV using the land use transition matrix, land use dynamic degree, and the benefit transfer method. Urban and built-up land use were found to dominate other use types. The top three highest annual rates of land use change were found in water bodies, rangeland, and urban and built-up land. The ESV in 2016 was found to be 1.31% higher than for 2006. The ecosystem service functions (ESFs) contributing to the increase in ESV were waste treatment, hydrological regulation, climate regulation and recreation and service culture. Future land use planning should focus on increasing wetlands and protecting agricultural land in the study area since these contribute to the highest ESV. In addition, it is essential to balance economic development with ecological enhancement.


2018 ◽  
Vol 3 (2) ◽  
pp. 11
Author(s):  
Robby Irsan ◽  
Luthfi Muta'ali ◽  
S Sudrajat

Entikong Region is located in Sanggau Regency, West Kalimantan Province, Indonesia, which is directly adjacent to Malaysia. Land use in the Border Area, which is massive and irregular, results in environmental degradation, deculturization, and lack of living standards of the community. High population growth in the border areas leads to excessive use of natural resources, and used land is not appropriately allocated. The land has limited function, and if the demand for the land is greater than the carrying capacity, there will be an imbalance that results in land degradation and its environment. The purpose of this study is to identify the type and extent of land function switch, analyze provider services as part of the Land Support Capacity Ecosystem services, and identify the Accuracy of Image Interpretation. The results showed that the increasing area of massive land use comes from a mixed plantation in 2017 increased by 60.6% of the total area of Entikong District. Degradation occurs in primary forest land use component which is only 18.6% of Entikong's total area in 2017. This indicates that the use of mixed plantation land acquires the protected forest, with many palm, rubber, and pepper. Similarly, the percentage of accuracy test from the interpretation result reaches 83.33% from 42 sample points in accordance with the real conditions. The Value of Clean Water Ecosystem Service Providers in 2011 was 0.36 and was 0.33 in 2017. Then within the period of almost 7 years, it is decreased by 0.03. Thus, the Ecosystem Service Index of clean water providers has a value less than 1, it means the function of the area as a provider of clean water is very small. Similarly, the Provider Ecosystem Services Index for Foodstuffs, the Value of Food Ecosystem Services Index in 2011 was 0.32 and was 0.31 in 2017, then within the nearly 7-year period, it is decreased by 0.01. The ecosystem services index as a food supply provider for the Entikong border area is very low (less than 1) which means the carrying capacity of the environment is not good enough for supplying food needs in Entikong. This indicates that there is a reduction in the availability of environmental services, and if it continues, then Environmental Assets declines sharply and services derived from nature will be lost or will be expensive in the near future. Thus, optimization and revitalization of land use are necessary by applying various policies related to development in the border area in Entikong District. Keywords: Borders, Land Use, Ecosystem Provider Services.   References Admadhani, D. N., Hajil, A. H. S., & Susanawati, L. D. (2013). Analysis of Water Supply and Water Demand for Carrying Capacity Assessment ( Case Study of Malang ). Journal of Natural Resources and Environment. Asdak, C., & Salim, H. (2006). Water Resource Capacity As a Spatial Planning Consideration. Journal of Environmental Engineering P3TL-BPPT. Ernan Rustiadi, Sunsus Saefulhakim, D. R. P. (2011). Planning and Regional Development. Restpent Press. Ghozali. (2013). Referral of Land Use Utilization Through Ecological Footprint in Gresik Regency. Territory and Environment, 1 No.1, 67–78. Hamidy, Z. (2003). Land Cover Change, Composition, and Life Type in Suakaidupan Cikepuh. Faculty of Forestry, IPB. Muta’ali, L. (2015). Regional Analysis Techniques For Regional Planning, Spatial Planning, and Environment (Februari). Yogyakarta: Faculty of Geography UGM. National Standardization Department. (2010). Classification of Land Cover. Purwadhi. (2008). Introduction Remote Sensing Imagery Interpretation. Semarang: LAPAN. Riqqi, A. (2014). Design Concept Techniques Determination of Supporting Capacity and Capacity of the National Environment and Islands / Islands And Provinces. Bali: KLH. Saripin, I. (2003). Identify Land Use Using Landsat TM Imagery. Agricultural Engineering Bulletin. Varika. (2015). Monitoring of Ecosystem Service-Based Ecotourism (Recreation and Ecotourism) Capacity in 2000 and 2015 Using Landsat Image in Badung Regency, Bali. Viska. (2012). Land Use Direction in Batu City Based on Ecological Ecosystem Approach. Pomits Technique, 1 No.1, 1–6.    


Sign in / Sign up

Export Citation Format

Share Document