scholarly journals Uncertainty Relations in Hydrodynamics

Water ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 3263
Author(s):  
Gyell Gonçalves de Matos ◽  
Takeshi Kodama ◽  
Tomoi Koide

The qualitative behaviors of uncertainty relations in hydrodynamics are numerically studied for fluids with low Reynolds numbers in 1+1 dimensional system. We first give a review for the formulation of the generalized uncertainty relations in the stochastic variational method (SVM), following the work by two of the present authors [Phys. Lett. A 382, 1472 (2018)]. In this approach, the origin of the finite minimum value of uncertainty is attributed to the non-differentiable (virtual) trajectory of a quantum particle and then both of the Kennard and Robertson-Schrödinger inequalities in quantum mechanics are reproduced. The same non-differentiable trajectory is applied to the motion of fluid elements in the Navier-Stokes-Fourier equation or the Navier-Stokes-Korteweg equation. By introducing the standard deviations of position and momentum for fluid elements, the uncertainty relations in hydrodynamics are derived. These are applicable even to the Gross-Pitaevskii equation and then the field-theoretical uncertainty relation is reproduced. We further investigate numerically the derived relations and find that the behaviors of the uncertainty relations for liquid and gas are qualitatively different. This suggests that the uncertainty relations in hydrodynamics are used as a criterion to classify liquid and gas in fluid.

Author(s):  
Gyell Gonçalves de Matos ◽  
Takeshi Kodama ◽  
Tomoi Koide

Uncertainty relations in hydrodynamics are numerically studied. We first give a review for the formulation of the generalized uncertainty relations in the stochastic variational method (SVM), following the work by two of the present authors [Phys.\ Lett.\ A\textbf{382}, 1472 (2018)]. In this approach, the origin of the finite minimum value of uncertainty is attributed to the non-differentiable (virtual) trajectory of a quantum particle and then both of the Kennard and Robertson-Schr\"{o}dinger inequalities in quantum mechanics are reproduced. The same non-differentiable trajectory is applied to the motion of fluid elements in the Navier-Stokes-Fourier equation or the Navier-Stokes-Korteweg equation. By introducing the standard deviations of position and momentum for fluid elements, the uncertainty relations in hydrodynamics are derived. These are applicable even to the Gross-Pitaevskii equation and then the field-theoretical uncertainty relation is reproduced. We further investigate numerically the derived relations and find that the behaviors of the uncertainty relations for liquid and gas are qualitatively different. This suggests that the uncertainty relations in hydrodynamics are used as a criterion to classify liquid and gas in fluid.


Aerospace ◽  
2021 ◽  
Vol 8 (8) ◽  
pp. 216
Author(s):  
Emanuel A. R. Camacho ◽  
Fernando M. S. P. Neves ◽  
André R. R. Silva ◽  
Jorge M. M. Barata

Natural flight has consistently been the wellspring of many creative minds, yet recreating the propulsive systems of natural flyers is quite hard and challenging. Regarding propulsive systems design, biomimetics offers a wide variety of solutions that can be applied at low Reynolds numbers, achieving high performance and maneuverability systems. The main goal of the current work is to computationally investigate the thrust-power intricacies while operating at different Reynolds numbers, reduced frequencies, nondimensional amplitudes, and mean angles of attack of the oscillatory motion of a NACA0012 airfoil. Simulations are performed utilizing a RANS (Reynolds Averaged Navier-Stokes) approach for a Reynolds number between 8.5×103 and 3.4×104, reduced frequencies within 1 and 5, and Strouhal numbers from 0.1 to 0.4. The influence of the mean angle-of-attack is also studied in the range of 0∘ to 10∘. The outcomes show ideal operational conditions for the diverse Reynolds numbers, and results regarding thrust-power correlations and the influence of the mean angle-of-attack on the aerodynamic coefficients and the propulsive efficiency are widely explored.


1991 ◽  
Vol 113 (4) ◽  
pp. 608-616 ◽  
Author(s):  
H. M. Jang ◽  
J. A. Ekaterinaris ◽  
M. F. Platzer ◽  
T. Cebeci

Two methods are described for calculating pressure distributions and boundary layers on blades subjected to low Reynolds numbers and ramp-type motion. The first is based on an interactive scheme in which the inviscid flow is computed by a panel method and the boundary layer flow by an inverse method that makes use of the Hilbert integral to couple the solutions of the inviscid and viscous flow equations. The second method is based on the solution of the compressible Navier–Stokes equations with an embedded grid technique that permits accurate calculation of boundary layer flows. Studies for the Eppler-387 and NACA-0012 airfoils indicate that both methods can be used to calculate the behavior of unsteady blade boundary layers at low Reynolds numbers provided that the location of transition is computed with the en method and the transitional region is modeled properly.


2007 ◽  
Vol 573 ◽  
pp. 171-190 ◽  
Author(s):  
A. DIPANKAR ◽  
T. K. SENGUPTA ◽  
S. B. TALLA

Vortex shedding behind a cylinder can be controlled by placing another small cylinder behind it, at low Reynolds numbers. This has been demonstrated experimentally by Strykowski & Sreenivasan (J. Fluid Mech. vol. 218, 1990, p. 74). These authors also provided preliminary numerical results, modelling the control cylinder by the innovative application of boundary conditions on some selective nodes. There are no other computational and theoretical studies that have explored the physical mechanism. In the present work, using an over-set grid method, we report and verify numerically the experimental results for flow past a pair of cylinders. Apart from providing an accurate solution of the Navier–Stokes equation, we also employ an energy-based receptivity analysis method to discuss some aspects of the physical mechanism behind vortex shedding and its control. These results are compared with the flow picture developed using a dynamical system approach based on the proper orthogonal decomposition (POD) technique.


2011 ◽  
Vol 685 ◽  
pp. 461-494 ◽  
Author(s):  
Alain Merlen ◽  
Christophe Frankiewicz

AbstractThe flow around a cylinder rolling or sliding on a wall was investigated analytically and numerically for small Reynolds numbers, where the flow is known to be two-dimensional and steady. Both prograde and retrograde rotation were analytically solved, in the Stokes regime, giving the values of forces and torque and a complete description of the flow. However, solving Navier–Stokes equation, a rotation of the cylinder near the wall necessarily induces a cavitation bubble in the nip if the fluid is a liquid, or compressible effects, if it is a gas. Therefore, an infinite lift force is generated, disconnecting the cylinder from the wall. The flow inside this interstice was then solved under the lubrication assumptions and fully described for a completely flooded interstice. Numerical results extend the analysis to higher Reynolds number. Finally, the effect of the upstream pressure on the onset of cavitation is studied, giving the initial location of the phenomenon and the relation between the upstream pressure and the flow rate in the interstice. It is shown that the flow in the interstice must become three-dimensional when cavitation takes place.


2021 ◽  
pp. 0309524X2110550
Author(s):  
Moutaz Elgammi ◽  
Tonio Sant ◽  
Atiyah Abdulmajid Ateeah

Modeling of the flow over aerofoil profiles at low Reynolds numbers is difficult due to the complex physics associated with the laminar flow separation mechanism. Two major problems arise in the estimation of profile drag: (1) the drag force at low Reynolds numbers is extremely small to be measured in a wind tunnel by force balance techniques, (2) the profile drag is usually calculated by pressure integration, hence the skin friction component of drag is excluded. In the present work, three different 4-digit NACA aerofoils are investigated. Measurements are conducted in an open-ended subsonic wind tunnel, while numerical work is performed by time Reynolds-averaged Navier Stokes (RANS) coupled with the laminar-kinetic-energy ( K-kl-w) turbulence model. The influence of the flow separation bubbles and transition locations on the profile drag is discussed and addressed. This paper gives important insights into importance of measurements at low Reynolds numbers for better aerodynamic loads predictions.


1997 ◽  
Vol 119 (2) ◽  
pp. 372-382 ◽  
Author(s):  
M. C. Sharatchandra ◽  
Mihir Sen ◽  
Mohamed Gad-el-Hak

A numerical study of flow in a novel viscous-based pumping device appropriate for microscale applications is described. The device, essentially consisting of a rotating cylinder eccentrically placed in a channel, is shown to be capable of generating a net flow against an externally imposed pressure gradient. Navier-Stokes Simulations at low Reynolds numbers are carried out using a finite-volume approach to study the influence of various geometric parameters. Slip effects for gas flows are also briefly investigated. The numerical results indicate that the generated flow rate is a maximum when the cylinder is in contact with a channel wall and that an optimum plate spacing exists. These observations are in excellent agreement, both qualitatively and quantitatively, with a previous experimental study. Furthermore, it is shown that effective pumping is obtained even for considerably higher Reynolds numbers, thereby extending the performance envelope of the proposed device to non-microscale applications as well. Finally, slip-flow effects appear to be significant only for Knudsen numbers greater than 0.1, which is important from the point of view of microscale applications.


Author(s):  
H. M. Jang ◽  
M. F. Platzer ◽  
J. A. Ekaterinaris ◽  
T. Cebeci

Two methods are described for calculating pressure distributions and boundary layers on blades subjected to low Reynolds numbers and ramp–type motion. The first is based on an interactive scheme in which the inviscid flow is computed by a panel method and the boundary layer flow by an inverse method that makes use of the Hilbert integral to couple the solutions of the inviscid and viscous flow equations. The second method is based on the solution of the compressible Navier–Stokes equations with an embedded grid technique that permits accurate calculation of boundary layer flows. Studies for the Eppler and NACA–0012 airfoils indicate that both methods can be used to calculate the behavior of unsteady blade boundary layers at low Reynolds numbers provided that the location of transition is computed with the en–method and the transitional region is modelled properly.


1991 ◽  
Vol 225 ◽  
pp. 557-574 ◽  
Author(s):  
Saul S. Abarbanel ◽  
Wai Sun Don ◽  
David Gottlieb ◽  
David H. Rudy ◽  
James C. Townsend

A detailed numerical study of two-dimensional flow past a circular cylinder at moderately low Reynolds numbers has been conducted using three different numerical algorithms for solving the time-dependent compressible Navier–Stokes equations. It was found that if the algorithm and associated boundary conditions were consistent and stable, then the major features of the unsteady wake were well predicted. However, it was also found that even stable and consistent boundary conditions could introduce additional periodic phenomena reminiscent of the type seen in previous wind-tunnel experiments. However, these additional frequencies were eliminated by formulating the boundary conditions in terms of the characteristic variables. An analysis based on a simplified model provides an explanation for this behaviour.


2012 ◽  
Vol 11 (4) ◽  
pp. 1300-1310 ◽  
Author(s):  
Wei Kang ◽  
Jia-Zhong Zhang ◽  
Pei-Hua Feng

AbstractA localized flexible airfoil at low Reynolds numbers is modeled and the aerodynamic performance is analyzed numerically. With characteristic based split scheme, a fluid solver for two dimensional incompressible Navier-Stokes equations is developed under the ALE framework, coupled with the theory of shallow arch, which is approximated by Galerkin method. Further, the interactions between the unsteady flow and the shallow arch are studied in detail. In particular, the effect of the self-excited vibration of the structure on aerodynamic performance of the airfoil is investigated deeply at various angles of attack. The results show that the lift-to-drag ratio has been increased greatly compared with the rigid airfoil. Finally, the relationship between the self-excited vibration and the evolution of the flow is analyzed using FFT tools.


Sign in / Sign up

Export Citation Format

Share Document