scholarly journals Estimation of the Average Retention Time of Precipitation at the Surface of a Catchment Area for Lake Biwa

Water ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 1711
Author(s):  
Maho Iwaki ◽  
Yosuke Yamashiki ◽  
Takashi Toda ◽  
Chunmeng Jiao ◽  
Michio Kumagai

In a lake catchment system, we analyzed the lake water-level responses to precipitation. Moreover, we identified the average precipitation retention time—due to subsurface flows—from the delay time calculated using the response function with data of water level and catchment precipitation (both rainfall and snowfall) collected over 30 years of continuous observations of Lake Biwa, Japan. We focused on the snow reserves and the water-level response delay due to the snowmelt of Lake Biwa catchment. We concluded that the average precipitation retention time of the catchment subsurface flow (i.e., above the impermeable layer) in Lake Biwa was approximately 45 days. Additionally, the precipitation retention time during snowmelt was shorter than that during the dry season. Overall, the shape of the response function reflects the lake system. This knowledge improves the understanding of lake systems and can be helpful for lake resource managers. Furthermore, finding the delay time from the response function may be useful for determining the contribution of rainfall to increasing the water levels of other lakes. Therefore, our results can contribute to the development of management strategies to address inland aquatic ecosystems and conservation.

2020 ◽  
Vol 77 (11) ◽  
pp. 1836-1845
Author(s):  
K. Martin Perales ◽  
Catherine L. Hein ◽  
Noah R. Lottig ◽  
M. Jake Vander Zanden

Climate change is altering hydrologic regimes, with implications for lake water levels. While lakes within lake districts experience the same climate, lakes may exhibit differential climate vulnerability regarding water level response to drought. We took advantage of a recent drought (∼2005–2010) and estimated changes in lake area, water level, and shoreline position on 47 lakes in northern Wisconsin using high-resolution orthoimagery and hypsographic curves. We developed a model predicting water level response to drought to identify characteristics of the most vulnerable lakes in the region, which indicated that low-conductivity seepage lakes found high in the landscape, with little surrounding wetland and highly permeable soils, showed the greatest water level declines. To explore potential changes in the littoral zone, we estimated coarse woody habitat (CWH) loss during the drought and found that drainage lakes lost 0.8% CWH while seepage lakes were disproportionately impacted, with a mean loss of 40% CWH. Characterizing how lakes and lake districts respond to drought will further our understanding of how climate change may alter lake ecology via water level fluctuations.


2020 ◽  
Vol 41 (1) ◽  
pp. 107-123
Author(s):  
Tsuyoshi Kobayashi ◽  
Martin Krogh ◽  
Hiroyuki ◽  
Russell J. Shiel ◽  
Hendrik Segers ◽  
...  

Water-level fluctuations can have significant effects on lake biological communities. Thirlmere Lakes are a group of five interconnected lakes located near Sydney. Water levels in Thirlmere Lakes have fluctuated over time, but there has been a recent decline that is of significant concern. In this study, we examined over one year the species composition and richness of zooplankton (Rotifera, Cladocera and Copepoda) and abiotic conditions in Lakes Nerrigorang and Werri Berri, two of the five Thirlmere lakes, with reference to lake water level. We recorded a total of 66 taxa of zooplankton, with the first report of the rotifer Notommata saccigera from Australia, and the first report of the rotifers Keratella javana, Lecane rhytida and Rousseletia corniculata from New South Wales. There was a marked difference in abiotic conditions between the two lakes, with more variable conditions in Lake Nerrigorang. There was a significant positive correlation between zooplankton species richness and lake water level but only for Lake Nerrigorang. Although the two lakes are closely situated and thought to be potentially connected at high water levels, they show distinct ecological characters and the effect of water-level fluctuations on zooplankton species richness seems to differ between the lakes.


2020 ◽  
Author(s):  
Kilian Mouris ◽  
Leon Saam ◽  
Felix Beckers ◽  
Silke Wieprecht ◽  
Stefan Haun

<p>Reservoir sedimentation reduces not only the available storage volume of reservoirs, but may also create other serious problems, such as an increase of bed levels or accumulations of nutrients and contaminants, which affect the environment. An increase in bed levels at the head of the reservoir can reduce flood safety and increase the risk for the surrounding areas. Deposited sediments close to the dam may block hydraulic structures, such as the bottom outlets, or, in case they enter the intake, lead to possible abrasion of plant components (e.g. wear of turbines and pipes).</p><p>Prior to reservoir construction, a pre-evaluation of the sediment yield from the catchment is usually performed by using soil erosion and sediment delivery models. However, the trapping efficiency is often only obtained by empirical approaches, such as Brune’s or Churchill’s curve, which are based on the capacity of the reservoir and the mean annual inflow. This is still common practice, although 3D hydro-morphodynamic models became powerful tools to numerically study sediment transport and reservoir sedimentation prior to the construction of reservoirs as well as during its operation.</p><p>Within this study, a fully 3D hydro-morphodynamic numerical model, based on the Reynolds-averaged Navier-Stokes equations, is applied to a case study to simulate, on the one hand suspended sediment transport within a hydropower reservoir and on the other hand a reservoir flushing operation as potential management scenario, with the goal to remobilize already deposited sediments and to release these sediments from the reservoir. The modeled reservoir has a total storage capacity of around 14 million m³, whereby the water level can fluctuate due to pumped-storage operation by 40.5 m (difference between the maximum operation level and the operational outlet). At the head is the natural inflow of two creeks into the reservoir and a lateral transition tunnel is located on the orographic right side, which collects several headwater streams from adjacent catchments.</p><p>Simulations are performed for different operation modes of the reservoir. The results clearly show that through active reservoir management (variation of water levels as well as using the momentum of the discharge from the transition tunnel) the sediment motion in the reservoir can be affected to a certain extent. It is for instance possible to almost completely avoid reservoir sedimentation in front of the dam and the hydraulic structures (water intake and bottom outlets) during sediment-laden flows when simultaneously high discharges are provided from the laterally located transition tunnel. The conducted simulation results of reservoir flushing also show that the success of the flushing operation is strongly dependent on the water level. As expected, flushing with full drawdown of the water level is the most efficient method to release sediments.</p><p>Through the detailed results of the 3D hydro-morphodynamic model, it is feasible to receive a deeper knowledge of the ongoing sediment transport processes within the studied reservoir. The gained knowledge can further be used to derive sustainable and efficient management strategies for the sediment management of the reservoir.</p>


Sensors ◽  
2020 ◽  
Vol 20 (5) ◽  
pp. 1254
Author(s):  
Daniel F. Carlson ◽  
Wayne J. Pavalko ◽  
Dorthe Petersen ◽  
Martin Olsen ◽  
Andreas E. Hass

Meltwater runoff from the Greenland Ice Sheet changes water levels in glacial lakes and can lead to glacial lake outburst flooding (GLOF) events that threaten lives and property. Icebergs produced at Greenland’s marine terminating glaciers drift into Baffin Bay and the North Atlantic, where they can threaten shipping and offshore installations. Thus, monitoring glacial lake water levels and the drift of icebergs can enhance safety and aid in the scientific studies of glacial hydrology and iceberg-ocean interactions. The Maker Buoy was originally designed as a low-cost and open source sensor to monitor surface ocean currents. The open source framework, low-cost components, rugged construction and affordable satellite data transmission capabilities make it easy to customize for environmental monitoring in remote areas and under harsh conditions. Here, we present two such Maker Buoy variants that were developed to monitor water level in an ice-infested glacial lake in southern Greenland and to track drifting icebergs and moorings in the Vaigat Strait (Northwest Greenland). We describe the construction of each design variant, methods to access data in the field without an internet connection, and deployments in Greenland in summer 2019. The successful deployments of each Maker Buoy variant suggest that they may also be useful in operational iceberg management strategies and in GLOF monitoring programs.


2016 ◽  
Vol 47 (S1) ◽  
pp. 69-83 ◽  
Author(s):  
Bing Li ◽  
Guishan Yang ◽  
Rongrong Wan ◽  
Xue Dai ◽  
Yanhui Zhang

Modeling of hydrological time series is essential for sustainable development and management of lake water resources. This study aims to develop an efficient model for forecasting lake water level variations, exemplified by the Poyang Lake (China) case study. A random forests (RF) model was first applied and compared with artificial neural networks, support vector regression, and a linear model. Three scenarios were adopted to investigate the effect of time lag and previous water levels as model inputs for real-time forecasting. Variable importance was then analyzed to evaluate the influence of each predictor for water level variations. Results indicated that the RF model exhibits the best performance for daily forecasting in terms of root mean square error (RMSE) and coefficient of determination (R2). Moreover, the highest accuracy was achieved using discharge series at 4-day-ahead and the average water level over the previous week as model inputs, with an average RMSE of 0.25 m for five stations within the lake. In addition, the previous water level was the most efficient predictor for water level forecasting, followed by discharge from the Yangtze River. Based on the performance of the soft computing methods, RF can be calibrated to provide information or simulation scenarios for water management and decision-making.


2020 ◽  
Vol 4 (1) ◽  
pp. 42-50
Author(s):  
Héctor L. Venegas-Quiñones ◽  
Mark Thomasson ◽  
Pablo A. Garcia-Chevesich

One of the most recurring discussions among people is the real impact of global warming and human activity on our natural resources. It is hard to identify and quantify the impact generated by each one. Laguna de Aculeo located in Paine city, Chile. It was one of the most attractive and beautiful places to visit in the summer. Today, It has been completely drying up. This research evaluates weather and hydrologic values registered by government weather and water levels stations. The purpose is to evaluate if there has been a change in precipitation, temperature, and water level trend. The analysis consists of the evaluation of the statistical parameters, and legal water withdrawals and fines imposed. The results of this study indicate that the cause of the drought of the lake is generated by climatic and anthropogenic factors. However, the changes in precipitation and temperature over the years are not significant for drying a lake. Therefore, it is possible to assume that human activities are arguably the greatest cause of impact on Laguna de Aculeo. Finally, we present tools, strategies, and practical solutions to prevent, control, and restore lake water level.


2019 ◽  
Author(s):  
Xingdong Li ◽  
Di Long ◽  
Qi Huang ◽  
Pengfei Han ◽  
Fanyu Zhao ◽  
...  

Abstract. The Tibetan Plateau (TP) known as Asia's water towers is quite sensitive to climate change, reflected by changes in hydrological state variables such as lake water storage. Given the extremely limited ground observations on the TP due to the harsh environment and complex terrain, we exploited multisource remote sensing, i.e., multiple altimetric missions and Landsat archives to create dense time series (monthly and even higher such as 10 days on average) of lake water level and storage changes across 52 large lakes (> 100 km2) on the TP during 2000–2017 (the data set is available online with a DOI: https://doi.org/10.1594/PANGAEA.898411). Field experiments were carried out in two typical lakes to validate the remotely sensed results. With Landsat archives and partial altimetry data, we developed optical water levels that cover most of TP lakes and serve as an ideal reference for merging multisource lake water levels. The optical water levels show an uncertainty of ~ 0.1 m that is comparable with most altimetry data and largely reduce the lack of dense altimetric observations with systematic errors well removed for most of lakes. The densified lake water levels provided critical and accurate information on the long-term and short-term monitoring of lake water level and storage changes on the TP. We found that the total storage of the 52 lakes increased by 97.3 km3 at two stages, i.e., 6.68 km3/yr during 2000–2012 and 2.85 km3/yr during 2012–2017. The total overflow from Lake Kusai to Lake Haidingnuoer and Lake Salt during Nov 9–Dec 31 in 2011 was estimated to be 0.22 km3, providing critical information on lake overflow flood monitoring and prediction as the expansion of some TP lakes becomes a serious threat to surrounding residents and infrastructure.


Inland Waters ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 283-294
Author(s):  
Maho Iwaki ◽  
Yousuke Yamashiki ◽  
Kohji Muraoka ◽  
Takashi Toda ◽  
Chunmeng Jiao ◽  
...  

2000 ◽  
Vol 42 (1-2) ◽  
pp. 173-177 ◽  
Author(s):  
T. Kılınçaslan

Lake Van, the largest in Turkey and fourth largest in the world is situated in a closed basin. The water level in Lake Van has increased by about four metres since the mid sixties causing serious environmental damage. It is known that this problem does not only pertain to Eastern Anatolia, but changes in water levels of lakes in Iran and Azerbaijan are also being observed. Thus, the problem seems to be regional rather than local. Research was conducted in order to evaluate the existing physical features of the Van Basin and to develop a proposal for allocation of the Van residents which are under flood threat. This paper presents the general features of the basin associated with water fluctuations and evaluates thesettlement condition relative to the change in the lake water level.


2020 ◽  
Vol 12 (1) ◽  
pp. 1200-1211
Author(s):  
Qinghua Tan ◽  
Yujie Liu

AbstractLakes are important indicators of climate change. The change in lake water level objectively reflects the availability of regional water resources. Analyzing the changes in water level and climate response of major lakes in countries along the “Belt and Road” is essential for sustainable water use and ecological protection. Based on the water level datasets of 39 large lakes (>400 km2) in China, Mongolia, and Russia (CMR) from 2002 to 2016, this study analyzed the spatiotemporal characteristics of water levels in major lakes of CMR, and their responses to climatic factors containing temperature, precipitation, and evapotranspiration. The results showed that (1) the water level of main lakes in CMR slightly increased with change rates ranged from −0.36 to 0.48 m/a, and the trends varied in lakes, (2) the water level of most lakes was sensitive to temperature with sensitivity value ranged from −2.14 m/°C to 5.59 m/°C, (3) changes of annual cumulative precipitation and evapotranspiration contributed most to the change of lake water level, but key factors affecting water level varied in lakes. Human activity is an important driving factor for the change in water levels and its impacts need further study.


Sign in / Sign up

Export Citation Format

Share Document