scholarly journals Dynamic Analysis of Wake Characteristics of the Circular Cylinder with a Dimpled Surface

Water ◽  
2021 ◽  
Vol 13 (16) ◽  
pp. 2197
Author(s):  
Jiyang Qi ◽  
Yuyao Shao ◽  
Qunyan Chen ◽  
Ping Liu ◽  
Chen Chen ◽  
...  

In order to understand the wake characteristics for the circular cylinder with the dimpled structure, particle image velocimetry (PIV) and proper orthogonal decomposition (POD) method are used to measure and analyze the flow field velocity and the flow characteristic of the wake flow of the circular cylinder with the dimpled surface. This study focuses on the distribution of Reynolds stress and turbulent kinetic energy, the velocity profiles and recirculation zones, and the velocity fluctuating characteristics of flow field with POD technology. It is found that the equivalent high-intensity Reynolds stress and turbulent kinetic energy regions of the circular cylinder with the dimpled surface are smaller, and the peak values are lower, and the velocity gradient in the wake region of the circular cylinder with the dimpled surface is larger. Otherwise, the energy contained by the dominant modes of the smooth cylinder is larger than that contained by the dominant modes of the circular cylinders with the dimpled surface, which means the energy of the dimpled cylinder is more distributed. At the same time, it is observed that the dimpled structure will decrease the vortex shedding intensity, but may increase the vortex shedding frequency, and destroy the inherent flow mode of the flow field around the cylinder.

Energies ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4136
Author(s):  
Clemens Gößnitzer ◽  
Shawn Givler

Cycle-to-cycle variations (CCV) in spark-ignited (SI) engines impose performance limitations and in the extreme limit can lead to very strong, potentially damaging cycles. Thus, CCV force sub-optimal engine operating conditions. A deeper understanding of CCV is key to enabling control strategies, improving engine design and reducing the negative impact of CCV on engine operation. This paper presents a new simulation strategy which allows investigation of the impact of individual physical quantities (e.g., flow field or turbulence quantities) on CCV separately. As a first step, multi-cycle unsteady Reynolds-averaged Navier–Stokes (uRANS) computational fluid dynamics (CFD) simulations of a spark-ignited natural gas engine are performed. For each cycle, simulation results just prior to each spark timing are taken. Next, simulation results from different cycles are combined: one quantity, e.g., the flow field, is extracted from a snapshot of one given cycle, and all other quantities are taken from a snapshot from a different cycle. Such a combination yields a new snapshot. With the combined snapshot, the simulation is continued until the end of combustion. The results obtained with combined snapshots show that the velocity field seems to have the highest impact on CCV. Turbulence intensity, quantified by the turbulent kinetic energy and turbulent kinetic energy dissipation rate, has a similar value for all snapshots. Thus, their impact on CCV is small compared to the flow field. This novel methodology is very flexible and allows investigation of the sources of CCV which have been difficult to investigate in the past.


2014 ◽  
Vol 18 (1) ◽  
pp. 1-16 ◽  
Author(s):  
Momir Sjeric ◽  
Darko Kozarac ◽  
Rudolf Tomic

The development of a two zone k-? turbulence model for the cycle-simulation software is presented. The in-cylinder turbulent flow field of internal combustion engines plays the most important role in the combustion process. Turbulence has a strong influence on the combustion process because the convective deformation of the flame front as well as the additional transfer of the momentum, heat and mass can occur. The development and use of numerical simulation models are prompted by the high experimental costs, lack of measurement equipment and increase in computer power. In the cycle-simulation codes, multi zone models are often used for rapid and robust evaluation of key engine parameters. The extension of the single zone turbulence model to the two zone model is presented and described. Turbulence analysis was focused only on the high pressure cycle according to the assumption of the homogeneous and isotropic turbulent flow field. Specific modifications of differential equation derivatives were made in both cases (single and two zone). Validation was performed on two engine geometries for different engine speeds and loads. Results of the cyclesimulation model for the turbulent kinetic energy and the combustion progress variable are compared with the results of 3D-CFD simulations. Very good agreement between the turbulent kinetic energy during the high pressure cycle and the combustion progress variable was obtained. The two zone k-? turbulence model showed a further progress in terms of prediction of the combustion process by using only the turbulent quantities of the unburned zone.


Author(s):  
Junkyu Jung ◽  
Daren Elcock ◽  
Chih-Jung Kuo ◽  
Michael Amitay ◽  
Yoav Peles

A flow control method is presented that employ liquid and gas jets to enhance heat and mass transfer in micro domains. By introducing pressure disturbances, mixing can be significantly enhanced through the promotion of early transition to a turbulent flow. Since heat transfer mechanisms are closely linked to flow characteristics, the heat transfer coefficient can be significantly enhanced with rigorous mixing. The flow field of water around a low aspect ratio micro circular pillar of diameter 150 μm entrenched inside a 225 μm high by 1500 μm wide microchannel with active flow control was studied and its effect on mixing is discussed. A steady control jet emanating from a 25 μm slit on the pillar was introduced to induce favorable disturbances to the flow in order to modify the flow field, promote turbulence, and increase large-scale mixing. Micro particle image velocimetry (μPIV) was employed to quantify the flow field, the spanwise vorticity, and the turbulent kinetic energy (TKE) in the microchannel. Flow regimes (i.e., steady, transition from quasi-steady to unsteady, and unsteady flow) were elucidated. The turbulent kinetic energy was shown to significantly increase with the controlled jet, and therefore, significantly enhance mixing at the micro scale.


Author(s):  
Antoine Placzek ◽  
Jean-Franc¸ois Sigrist ◽  
Aziz Hamdouni

The numerical simulation of the flow past a circular cylinder forced to oscillate transversely to the incident stream is presented here for a fixed Reynolds number equal to 100. The 2D Navier-Stokes equations are solved with a classical Finite Volume Method with an industrial CFD code which has been coupled with a user subroutine to obtain an explicit staggered procedure providing the cylinder displacement. A preliminary work is conducted in order to check the computation of the wake characteristics for Reynolds numbers smaller than 150. The Strouhal frequency fS, the lift and drag coefficients CL and CD are thus controlled among other parameters. The simulations are then performed with forced oscillations f0 for different frequency rations F = f0/fS in [0.50–1.50] and an amplitude A varying between 0.25 and 1.25. The wake characteristics are analysed using the time series of the fluctuating aerodynamic coefficients and their FFT. The frequency content is then linked to the shape of the phase portrait and to the vortex shedding mode. By choosing interesting couples (A,F), different vortex shedding modes have been observed, which are similar to those of the Williamson-Roshko map.


1988 ◽  
Vol 190 ◽  
pp. 491-512 ◽  
Author(s):  
M. F. Unal ◽  
D. Rockwell

Vortex shedding from a circular cylinder is examined over a tenfold range of Reynolds number, 440 ≤ Re ≤ 5040. The shear layer separating from the cylinder shows, to varying degrees, an exponential variation of fluctuating kinetic energy with distance downstream of the cylinder. The characteristics of this unsteady shear layer are interpreted within the context of an absolute instability of the near wake. At the trailing-end of the cylinder, the fluctuation amplitude of the instability correlates well with previously measured values of mean base pressure. Moreover, this amplitude follows the visualized vortex formation length as Reynolds number varies. There is a drastic decrease in this near-wake fluctuation amplitude in the lower range of Reynolds number and a rapid increase at higher Reynolds number. These trends are addressed relative to the present, as well as previous, observations.


2015 ◽  
Vol 93 (10) ◽  
pp. 1124-1130 ◽  
Author(s):  
T. Wang ◽  
P. Li ◽  
J.S. Bai ◽  
G. Tao ◽  
B. Wang ◽  
...  

The subgrid-scale (SGS) terms of turbulence transport are modelled by the stretched-vortex SGS stress model, and a large-eddy simulation code multi-viscous fluid and turbulence (MVFT) is developed to investigate the MVFT problems. Then one AWE shock tube experiment of interface instability is simulated numerically by MVFT code, which reproduces the development process of the interface. The obtained numerical images of interface evolution and wave structures in flow field are consistent with the experimental results. The evolution of perturbed interface and propagation of shock waves in flow field and their interactions are analyzed in detail. The statistics features of turbulence mixing in the form of finer quantities, such as the turbulent kinetic energy, enstrophy, density variance, and turbulent mass flux are investigated, which also proves that the SGS model has a key role in large-eddy simulation. The turbulent kinetic energy and enstrophy decay with time as a power law.


2014 ◽  
Vol 760 ◽  
pp. 304-312 ◽  
Author(s):  
Farid Karimpour ◽  
Subhas K. Venayagamoorthy

AbstractIn this study, we revisit the consequence of assuming equilibrium between the rates of production ($P$) and dissipation $({\it\epsilon})$ of the turbulent kinetic energy $(k)$ in the highly anisotropic and inhomogeneous near-wall region. Analytical and dimensional arguments are made to determine the relevant scales inherent in the turbulent viscosity (${\it\nu}_{t}$) formulation of the standard $k{-}{\it\epsilon}$ model, which is one of the most widely used turbulence closure schemes. This turbulent viscosity formulation is developed by assuming equilibrium and use of the turbulent kinetic energy $(k)$ to infer the relevant velocity scale. We show that such turbulent viscosity formulations are not suitable for modelling near-wall turbulence. Furthermore, we use the turbulent viscosity $({\it\nu}_{t})$ formulation suggested by Durbin (Theor. Comput. Fluid Dyn., vol. 3, 1991, pp. 1–13) to highlight the appropriate scales that correctly capture the characteristic scales and behaviour of $P/{\it\epsilon}$ in the near-wall region. We also show that the anisotropic Reynolds stress ($\overline{u^{\prime }v^{\prime }}$) is correlated with the wall-normal, isotropic Reynolds stress ($\overline{v^{\prime 2}}$) as $-\overline{u^{\prime }v^{\prime }}=c_{{\it\mu}}^{\prime }(ST_{L})(\overline{v^{\prime 2}})$, where $S$ is the mean shear rate, $T_{L}=k/{\it\epsilon}$ is the turbulence (decay) time scale and $c_{{\it\mu}}^{\prime }$ is a universal constant. ‘A priori’ tests are performed to assess the validity of the propositions using the direct numerical simulation (DNS) data of unstratified channel flow of Hoyas & Jiménez (Phys. Fluids, vol. 18, 2006, 011702). The comparisons with the data are excellent and confirm our findings.


2011 ◽  
Vol 680 ◽  
pp. 459-476 ◽  
Author(s):  
PRANESH MURALIDHAR ◽  
NANGELIE FERRER ◽  
ROBERT DANIELLO ◽  
JONATHAN P. ROTHSTEIN

Superhydrophobic surfaces have been shown to produce significant drag reduction for both laminar and turbulent flows of water through large- and small-scale channels. In this paper, a series of experiments were performed which investigated the effect of superhydrophobic-induced slip on the flow past a circular cylinder. In these experiments, circular cylinders were coated with a series of superhydrophobic surfaces fabricated from polydimethylsiloxane with well-defined micron-sized patterns of surface roughness. The presence of the superhydrophobic surface was found to have a significant effect on the vortex shedding dynamics in the wake of the circular cylinder. When compared to a smooth, no-slip cylinder, cylinders coated with superhydrophobic surfaces were found to delay the onset of vortex shedding and increase the length of the recirculation region in the wake of the cylinder. For superhydrophobic surfaces with ridges aligned in the flow direction, the separation point was found to move further upstream towards the front stagnation point of the cylinder and the vortex shedding frequency was found to increase. For superhydrophobic surfaces with ridges running normal to the flow direction, the separation point and shedding frequency trends were reversed. Thus, in this paper we demonstrate that vortex shedding dynamics is very sensitive to changes of feature spacing, size and orientation along superhydrophobic surfaces.


Author(s):  
Oguz Uzol ◽  
Yi-Chih Chow ◽  
Joseph Katz ◽  
Charles Meneveau

Detailed measurements of the flow field within the entire 2nd stage of a two stage axial turbomachine are performed using Particle Image Velocimetry. The experiments are performed in a facility that allows unobstructed view on the entire flow field, facilitated using transparent rotor and stator and a fluid that has the same optical index of refraction as the blades. The entire flow field is composed of a “lattice of wakes”, and the resulting wake-wake and wake-blade interactions cause major flow and turbulence non-uniformities. The paper presents data on the phase averaged velocity and turbulent kinetic energy distributions, as well as the average-passage velocity and deterministic stresses. The phase-dependent turbulence parameters are determined from the difference between instantaneous and the phase-averaged data. The distributions of average-passage flow field over the entire stage in both the stator and rotor frames of reference are calculated by averaging the phase-averaged data. The deterministic stresses are calculated from the difference between the phase-averaged and average-passage velocity distributions. Clearly, wake-wake and wake-blade interactions are the dominant contributors to generation of high deterministic stresses and tangential non-uniformities, in the rotor-stator gap, near the blades and in the wakes behind them. The turbulent kinetic energy levels are generally higher than the deterministic kinetic energy levels, whereas the shear stress levels are comparable, both in the rotor and stator frames of references. At certain locations the deterministic shear stresses are substantially higher than the turbulent shear stresses, such as close to the stator blade in the rotor frame of reference. The non-uniformities in the lateral velocity component due to the interaction of the rotor blade with the 1st stage rotor-stator wakes, result in 13% variations in the specific work input of the rotor. Thus, in spite of the relatively large blade row spacings in the present turbomachine, the non-uniformities in flow structure have significant effects on the overall performance of the system.


2010 ◽  
Vol 37 (4) ◽  
pp. 648-656 ◽  
Author(s):  
Ahmad Sana ◽  
Hitoshi Tanaka

A total of seven versions of two-equation turbulence models (four versions of low Reynolds number k–ε model, one k–ω model and two versions of k–ε / k–ω blended models) are tested against the direct numerical simulation (DNS) data of a one-dimensional oscillatory boundary layer with flat crested free-stream velocity that results from a steep pressure gradient. A detailed comparison has been made for cross-stream velocity, turbulent kinetic energy (TKE), Reynolds stress, and ratio of Reynolds stress and turbulent kinetic energy. It is observed that the newer versions of k–ε model perform very well in predicting the velocity, turbulent kinetic energy, and Reynolds stress. The k–ω model and blended models underestimate the peak value of turbulent kinetic energy that may be explained by the Reynolds stress to TKE ratio in the logarithmic zone. The maximum bottom shear stress is well predicted by the k–ε model proposed by Sana et al. and the original k–ω model.


Sign in / Sign up

Export Citation Format

Share Document