scholarly journals Variation in Anisotropy with Dehydration in Layered Sandstone

Water ◽  
2021 ◽  
Vol 13 (16) ◽  
pp. 2224
Author(s):  
Fujun Liu ◽  
Liu Yang ◽  
Hailiang Jia

Anisotropy in rock could significantly affect the stability and safety of rock engineering by differing physical and mechanical properties of rock in different directions. Another major factor for physical and mechanical properties of rock is moisture state, however, whether anisotropy can be altered by it remains unclear. This study investigated variation in anisotropy (by conduct-ing ultrasonic tests) with moisture state (measured by nuclear magnetic resonance) in layered sandstones, and interpreted the phenomenon from the perspective of linking dehydration with pore structure of rock. The results show that (1) sandstone with more obvious bedding bears stronger anisotropy, the P-wave velocity in the perpendicular direction is much lower than that in the parallel direction. (2) The anisotropy index fluctuates around 1 with dehydration of sandstone without obvious bedding, while the anisotropy in sandstone with obvious bedding was significantly enhanced be dehydration. (3) During dehydration bulk water escaped firstly then capillary water and bound water. (4) Dehydration is controlled by the bedding structure. The different dehydration rates of pore water in different directions inevitably lead to heterogeneity in moisture state that change the anisotropy of the rock, which is reflected by the non-synchronous changes in P-wave velocities in different directions.

Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Zhizhen Zhang ◽  
Yixin Niu ◽  
Xiaoji Shang ◽  
Peng Ye ◽  
Rui Zhou ◽  
...  

Both surface and underground rocks in nature often undergo repeated drying and wetting. The dry-wet cycle is a weathering effect that includes physical and chemical processes, which has varying degrees of degradation effects on the physical and mechanical properties of rocks. This paper analyzes and discusses this kind of rock degradation based on the existing literature data. First, the deterioration degree of various physical and mechanical properties (including density, P-wave velocity, porosity, static and dynamic compressive/tensile strength, and fracture toughness) is summarized as the number of dry-wet cycles increases. Secondly, the possible degradation mechanism of the dry-wet cycle is explained in terms of clay mineral swelling, solute migration, and microcrack evolution. Then, the damage constitutive model of the rock after cyclic dry-wet treatment is introduced. Finally, the issues that need to be studied in the future are put forward.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Giovanna Concu ◽  
Barbara De Nicolo ◽  
Monica Valdes

The aim of this study was to evaluate ultrasonic P-wave velocity as a feature for predicting some physical and mechanical properties that describe the behavior of local building limestone. To this end, both ultrasonic testing and compressive tests were carried out on several limestone specimens and statistical correlation between ultrasonic velocity and density, compressive strength, and modulus of elasticity was studied. The effectiveness of ultrasonic velocity was evaluated by regression, with the aim of observing the coefficient of determinationr2between ultrasonic velocity and the aforementioned parameters, and the mathematical expressions of the correlations were found and discussed. The strong relations that were established between ultrasonic velocity and limestone properties indicate that these parameters can be reasonably estimated by means of this nondestructive parameter. This may be of great value in a preliminary phase of the diagnosis and inspection of stone masonry conditions, especially when the possibility of sampling material cores is reduced.


Minerals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 779
Author(s):  
Mohamed Gomah ◽  
Guichen Li ◽  
Salah Bader ◽  
Mohamed Elkarmoty ◽  
Mohamed Ismael

The awareness of the impact of high temperatures on rock properties is essential to the design of deep geotechnical applications. The purpose of this research is to assess the influence of heating and cooling treatments on the physical and mechanical properties of Egyptian granodiorite as a degrading factor. The samples were heated to various temperatures (200, 400, 600, and 800 °C) and then cooled at different rates, either slowly cooled in the oven and air or quickly cooled in water. The porosity, water absorption, P-wave velocity, tensile strength, failure mode, and associated microstructural alterations due to thermal effect have been studied. The study revealed that the granodiorite has a slight drop in tensile strength, up to 400 °C, for slow cooling routes and that most of the physical attributes are comparable to natural rock. Despite this, granodiorite thermal deterioration is substantially higher for quick cooling than for slow cooling. Between 400:600 °C is ‘the transitional stage’, where the physical and mechanical characteristics degraded exponentially for all cooling pathways. Independent of the cooling method, the granodiorite showed a ductile failure mode associated with reduced peak tensile strengths. Additionally, the microstructure altered from predominantly intergranular cracking to more trans-granular cracking at 600 °C. The integrity of the granodiorite structure was compromised at 800 °C, the physical parameters deteriorated, and the rock tensile strength was negligible. In this research, the temperatures of 400, 600, and 800 °C were remarked to be typical of three divergent phases of granodiorite mechanical and physical properties evolution. Furthermore, 400 °C could be considered as the threshold limit for Egyptian granodiorite physical and mechanical properties for typical thermal underground applications.


Author(s):  
K. Z. Tilloev ◽  
S. V. Kondakov

The construction and method of calculating the stability of a crawler excavator equipped with a new working body (cone roller) are considered. The calculation is made on two working positions (longitudinal and transverse) of the excavator, provided that the excavator must apply the maximum force on the working body at an angle of 90°. The force applied by the excavator boom to the cone roller during the introduction depends on the physical and mechanical properties of the compacted soil. The calculation method differs in that during the compaction of the roadbed, the cone sinks into the ground, and the excavator tends to roll in the direction of the rear track support roller, in contrast to the traditional danger of tipping over the front support roller when working with a bucket.


Author(s):  
Haopeng Jiang ◽  
Annan Jiang ◽  
Fengrui Zhang

Experimental tests were conducted to study the influence of natural cooling and water cooling on the physical and mechanical properties of quartz sandstone. This study aims to understand the effect of different cooling methods on the physical and mechanical properties of quartz sandstone (such as mass, volume, density, P-wave velocity, elastic modulus, uniaxial compressive strength, etc.). The results show that the uniaxial compressive strength (UCS) and elastic modulus(E) of the specimens cooled by natural-cooling and water-cooling decrease with heating temperature. At 800℃, after natural cooling and water cooling, the average value of UCS decreased by 34.65% and 57.90%, and the average value of E decreased by 87.66% and 89.05%, respectively. Meanwhile, scanning electron microscope (SEM) images were used to capture the development of microcracks and pores within the specimens after natural-cooling and water-cooling, and it was found that at the same temperature, water cooling treatment was more likely to cause microcracks and pores, which can cause more serious damage to the quartz sandstone. These results confirm that different cooling methods have different effects on the physical and mechanical properties of quartz sandstone, and provide a basis for the stability prediction of rock mass engineering such as tunnel suffering from fire.


2019 ◽  
Vol 945 ◽  
pp. 433-437
Author(s):  
M.D. Sokolova ◽  
A.F. Fedorova ◽  
M.L. Davydova

The present paper outlines the results of full-scale tests of climatic stability and the study of resistance to the action of hydrocarbon media of rubbers based on BNKS-18-18 (butadiene-nitrile rubber) and Hydrin T6000 epichlorohydrin rubber containing one of 6PPDstabilizerwith an aromatic amine moiety widely used in synthetic rubbers. Samples are exposed in an open ground under natural conditions of exposure to climatic external factors of Yakutsk in the Republic of Sakha (Yakutia), as well as in the oil environment of Talakanskoye field and I-50A hydraulic fluid in an unheated room. Such indexes of the samples as conditional tensile strength, elongation at rupture, hardness and degree of swelling are measured to determine the resistance of rubbers to aging after the first, third, and sixth months of exposing. The results of the study reveal the contribution of 6PPD stabilizer in maintaining the stability of the physical and mechanical properties of BNKS-18: rubber containing 6PPD has less property changes both in the open air and in hydrocarbon media compared to rubber without a stabilizer. It should be noted that the oil environment is the most aggressive environment, the swelling of rubbers in oil leads to a significant reduction in strength due to a decrease in intermolecular interaction.6PPD stabilizer occurred less effective for the rubber based on Hydrin T6000: changes in properties of the samples containing the stabilizer are larger than those of the samples without the stabilizer. However, unlike BNKS-18-18-based rubber, the swelling of rubber based on Hydrin T6000 led to the greatest stability of the physical and mechanical properties in the oil environment compared to the open air and hydraulic fluids.


Sign in / Sign up

Export Citation Format

Share Document