scholarly journals Deterioration of Physical and Mechanical Properties of Rocks by Cyclic Drying and Wetting

Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Zhizhen Zhang ◽  
Yixin Niu ◽  
Xiaoji Shang ◽  
Peng Ye ◽  
Rui Zhou ◽  
...  

Both surface and underground rocks in nature often undergo repeated drying and wetting. The dry-wet cycle is a weathering effect that includes physical and chemical processes, which has varying degrees of degradation effects on the physical and mechanical properties of rocks. This paper analyzes and discusses this kind of rock degradation based on the existing literature data. First, the deterioration degree of various physical and mechanical properties (including density, P-wave velocity, porosity, static and dynamic compressive/tensile strength, and fracture toughness) is summarized as the number of dry-wet cycles increases. Secondly, the possible degradation mechanism of the dry-wet cycle is explained in terms of clay mineral swelling, solute migration, and microcrack evolution. Then, the damage constitutive model of the rock after cyclic dry-wet treatment is introduced. Finally, the issues that need to be studied in the future are put forward.

Minerals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 779
Author(s):  
Mohamed Gomah ◽  
Guichen Li ◽  
Salah Bader ◽  
Mohamed Elkarmoty ◽  
Mohamed Ismael

The awareness of the impact of high temperatures on rock properties is essential to the design of deep geotechnical applications. The purpose of this research is to assess the influence of heating and cooling treatments on the physical and mechanical properties of Egyptian granodiorite as a degrading factor. The samples were heated to various temperatures (200, 400, 600, and 800 °C) and then cooled at different rates, either slowly cooled in the oven and air or quickly cooled in water. The porosity, water absorption, P-wave velocity, tensile strength, failure mode, and associated microstructural alterations due to thermal effect have been studied. The study revealed that the granodiorite has a slight drop in tensile strength, up to 400 °C, for slow cooling routes and that most of the physical attributes are comparable to natural rock. Despite this, granodiorite thermal deterioration is substantially higher for quick cooling than for slow cooling. Between 400:600 °C is ‘the transitional stage’, where the physical and mechanical characteristics degraded exponentially for all cooling pathways. Independent of the cooling method, the granodiorite showed a ductile failure mode associated with reduced peak tensile strengths. Additionally, the microstructure altered from predominantly intergranular cracking to more trans-granular cracking at 600 °C. The integrity of the granodiorite structure was compromised at 800 °C, the physical parameters deteriorated, and the rock tensile strength was negligible. In this research, the temperatures of 400, 600, and 800 °C were remarked to be typical of three divergent phases of granodiorite mechanical and physical properties evolution. Furthermore, 400 °C could be considered as the threshold limit for Egyptian granodiorite physical and mechanical properties for typical thermal underground applications.


2020 ◽  
Author(s):  
Li Yu ◽  
Hai-wang PENG ◽  
Yu Zhang ◽  
GuoWei Li

Abstract To study the influence of thermal shock caused by water cooling on the physical and mechanical properties of high-temperature granite, granite was subjected to an increasing number of high-temperature (300℃) water-cooling and thermal shock treatment cycles, and static mechanical experiments were carried out on the treated granite. The results support the following conclusions: (1) Thermal shock causes an increase in the number and size of the pores and cracks within the granite; thus, its volume expands, density decreases, water absorption rate increases, and P-wave velocity decreases. (2) With an increase in the number of thermal shocks, both the compressive strength and tensile strength of the granite decrease, and there is a linear relationship between the compressive strength and tensile strength. With the corresponding fitting formula, the change in the strength of the granite can be accurately predicted. (3) With an increase in the number of thermal shocks, the plasticity of the granite increases and its resistance to deformation weakens, which is manifested as a decrease in both the compressive modulus and tensile modulus of the granite. After 15 cycles of thermal shock, the compressive elastic modulus and tensile modulus of the granite decreased by 25.18% and 46.76%, respectively. (4) The m and s values of the damaged granite were calculated based on the Hoek-Brown empirical criterion, and it was found that both of these parameters decrease with the increase in the number of thermal shocks. The calculation results can provide a reference for engineering rock mass failure.Clinical trial registration


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Giovanna Concu ◽  
Barbara De Nicolo ◽  
Monica Valdes

The aim of this study was to evaluate ultrasonic P-wave velocity as a feature for predicting some physical and mechanical properties that describe the behavior of local building limestone. To this end, both ultrasonic testing and compressive tests were carried out on several limestone specimens and statistical correlation between ultrasonic velocity and density, compressive strength, and modulus of elasticity was studied. The effectiveness of ultrasonic velocity was evaluated by regression, with the aim of observing the coefficient of determinationr2between ultrasonic velocity and the aforementioned parameters, and the mathematical expressions of the correlations were found and discussed. The strong relations that were established between ultrasonic velocity and limestone properties indicate that these parameters can be reasonably estimated by means of this nondestructive parameter. This may be of great value in a preliminary phase of the diagnosis and inspection of stone masonry conditions, especially when the possibility of sampling material cores is reduced.


Water ◽  
2021 ◽  
Vol 13 (16) ◽  
pp. 2224
Author(s):  
Fujun Liu ◽  
Liu Yang ◽  
Hailiang Jia

Anisotropy in rock could significantly affect the stability and safety of rock engineering by differing physical and mechanical properties of rock in different directions. Another major factor for physical and mechanical properties of rock is moisture state, however, whether anisotropy can be altered by it remains unclear. This study investigated variation in anisotropy (by conduct-ing ultrasonic tests) with moisture state (measured by nuclear magnetic resonance) in layered sandstones, and interpreted the phenomenon from the perspective of linking dehydration with pore structure of rock. The results show that (1) sandstone with more obvious bedding bears stronger anisotropy, the P-wave velocity in the perpendicular direction is much lower than that in the parallel direction. (2) The anisotropy index fluctuates around 1 with dehydration of sandstone without obvious bedding, while the anisotropy in sandstone with obvious bedding was significantly enhanced be dehydration. (3) During dehydration bulk water escaped firstly then capillary water and bound water. (4) Dehydration is controlled by the bedding structure. The different dehydration rates of pore water in different directions inevitably lead to heterogeneity in moisture state that change the anisotropy of the rock, which is reflected by the non-synchronous changes in P-wave velocities in different directions.


Alloy Digest ◽  
2000 ◽  
Vol 49 (1) ◽  

Abstract Kaiser Aluminum Alloy 7050 has very high mechanical properties including tensile strength, high fracture toughness, and a high resistance to exfoliation and stress-corrosion cracking. The alloy is typically used in aircraft structural parts. This datasheet provides information on composition, physical properties, hardness, tensile properties, and shear strength as well as fracture toughness and fatigue. It also includes information on forming, heat treating, machining, and joining. Filing Code: AL-366. Producer or source: Tennalum, A Division of Kaiser Aluminum.


Polymers ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 2359
Author(s):  
Harmaen Ahmad Saffian ◽  
Masayuki Yamaguchi ◽  
Hidayah Ariffin ◽  
Khalina Abdan ◽  
Nur Kartinee Kassim ◽  
...  

In this study, Kraft lignin was esterified with phthalic anhydride and was served as reinforcing filler for poly(butylene succinate) (PBS). Composites with different ratios of PBS, lignin (L), modified lignin (ML) and kenaf core fibers (KCF) were fabricated using a compounding method. The fabricated PBS composites and its counterparts were tested for thermal, physical and mechanical properties. Weight percent gain of 4.5% after lignin modification and the FTIR spectra has confirmed the occurrence of an esterification reaction. Better thermo-mechanical properties were observed in the PBS composites reinforced with modified lignin and KCF, as higher storage modulus and loss modulus were recorded using dynamic mechanical analysis. The density of the composites fabricated ranged from 1.26 to 1.43 g/cm3. Water absorption of the composites with the addition of modified lignin is higher than that of composites with unmodified lignin. Pure PBS exhibited the highest tensile strength of 18.62 MPa. Incorporation of lignin and KCF into PBS resulted in different extents of reduction in tensile strength (15.78 to 18.60 MPa). However, PBS composite reinforced with modified lignin exhibited better tensile and flexural strength compared to its unmodified lignin counterpart. PBS composite reinforced with 30 wt% ML and 20 wt% KCF had the highest Izod impact, as fibers could diverge the cracking propagation of the matrix. The thermal conductivity value of the composites ranged from 0.0903 to 0.0983 W/mK, showing great potential as a heat insulator.


2012 ◽  
Vol 3 (1) ◽  
pp. 13-26
Author(s):  
Myrtha Karina ◽  
Lucia Indrarti ◽  
Rike Yudianti ◽  
Indriyati

The effect of castor oil on the physical and mechanical properties of bacterial cellulose is described. Bacterial cellulose (BC) was impregnated with 0.5–2% (w/v) castor oil (CO) in acetone–water, providing BCCO films. Scanning electron micrographs revealed that the castor oil penetrated the pores of the bacterial cellulose, resulting in a smoother morphology and enhanced hydrophilicity. Castor oil caused a slight change in crystallinity indices and resulted in reduced tensile strength and Young's modulus but increased elongation at break. A significant reduction in tensile strength and Young's modulus was achieved in BCCO films with 2% castor oil, and there was an improvement in elongation at break and hydrophilicity. Impregnation with castor oil, a biodegradable and safe plasticiser, resulted in less rigid and more ductile composites.


Sign in / Sign up

Export Citation Format

Share Document