scholarly journals Diatom Epibionts on Amphipod Crustaceans: A Possible Vector for Co-Introductions?

Water ◽  
2021 ◽  
Vol 13 (16) ◽  
pp. 2227
Author(s):  
Andrea Desiderato ◽  
Jan Beermann ◽  
Maria Angelica Haddad ◽  
Luciano Felicio Fernandes

Epibiotic associations can result in co-introductions of non-indigenous species, which may affect ecosystems in several ways. In fouling communities of three estuaries in southern Brazil, a number of amphipods was found to harbour a dense coverage of epibionts. Three different species, the two globally widespread caprellids Caprella equilibra and Paracaprella pusilla, as well as the ischyrocerid Jassa valida, had been colonised by diatoms. Further scanning electron microscope analyses assigned these diatoms to 14 different species that had previously been reported from benthic habitats. This is one of the scarce records of diatoms attached to amphipods. The occurrence of the diatom Amphora helenensis represents the first report for Brazilian waters as well as the second record for the whole SW Atlantic Ocean. As some diatoms were associated with common fouling amphipods, a possible regional spread aided by these crustaceans seems likely. Possible effects of this amphipod-diatom association on the animals and their implications for the underlying ecosystems of this remain to be elucidated.

Phytotaxa ◽  
2016 ◽  
Vol 243 (2) ◽  
pp. 185 ◽  
Author(s):  
Letícia Donadel ◽  
Lezilda Carvalho Torgan

Falcula hyalina Takano (1983: 24) is an epizoic diatom commonly associated with coastal copepods in many parts of the world (Takano 1983, Mahoney & Gibson 1983, Hiromi et al. 1985, Prasad et al. 1989, Souza-Mosimann et al. 1989, Fernandes & Calixto-Feres 2012, Li et al. 2014). The species was described and illustrated using the transmission electron microscope by Takano (1983) who differentiated it from other taxa of the genus—F. rogallii Voigt (1960: 86), F. media Voigt (1960: 87), F. semiundulata Voigt (1960: 87), F. paracelsiana Voigt (1961: 54) and F. media var. subsalina Proshkina-Lavrenko (1963: 36)—by the morphometric features of the valve (length, width, and stria and areolae density). Some years later, Prasad et al. (1989) improved the morphological features of F. hyalina using the scanning electron microscope and discussed the relation of the species with similar taxa. Round et al. (1990), in the diacritic description of the genus, raised the question that F. hyalina had some features that could not match with Falcula, such as the wider sternum and poroidal apical pore field (ocellulimbus), as opposed to a series of slits at the apices. Therefore, the taxonomic position of F. hyalina still remains uncertain.


Author(s):  
R. E. Ferrell ◽  
G. G. Paulson

The pore spaces in sandstones are the result of the original depositional fabric and the degree of post-depositional alteration that the rock has experienced. The largest pore volumes are present in coarse-grained, well-sorted materials with high sphericity. The chief mechanisms which alter the shape and size of the pores are precipitation of cementing agents and the dissolution of soluble components. Each process may operate alone or in combination with the other, or there may be several generations of cementation and solution.The scanning electron microscope has ‘been used in this study to reveal the morphology of the pore spaces in a variety of moderate porosity, orthoquartzites.


Author(s):  
C. T. Nightingale ◽  
S. E. Summers ◽  
T. P. Turnbull

The ease of operation of the scanning electron microscope has insured its wide application in medicine and industry. The micrographs are pictorial representations of surface topography obtained directly from the specimen. The need to replicate is eliminated. The great depth of field and the high resolving power provide far more information than light microscopy.


Author(s):  
K. Shibatomi ◽  
T. Yamanoto ◽  
H. Koike

In the observation of a thick specimen by means of a transmission electron microscope, the intensity of electrons passing through the objective lens aperture is greatly reduced. So that the image is almost invisible. In addition to this fact, it have been reported that a chromatic aberration causes the deterioration of the image contrast rather than that of the resolution. The scanning electron microscope is, however, capable of electrically amplifying the signal of the decreasing intensity, and also free from a chromatic aberration so that the deterioration of the image contrast due to the aberration can be prevented. The electrical improvement of the image quality can be carried out by using the fascionating features of the SEM, that is, the amplification of a weak in-put signal forming the image and the descriminating action of the heigh level signal of the background. This paper reports some of the experimental results about the thickness dependence of the observability and quality of the image in the case of the transmission SEM.


Author(s):  
S. Takashima ◽  
H. Hashimoto ◽  
S. Kimoto

The resolution of a conventional transmission electron microscope (TEM) deteriorates as the specimen thickness increases, because chromatic aberration of the objective lens is caused by the energy loss of electrons). In the case of a scanning electron microscope (SEM), chromatic aberration does not exist as the restrictive factor for the resolution of the transmitted electron image, for the SEM has no imageforming lens. It is not sure, however, that the equal resolution to the probe diameter can be obtained in the case of a thick specimen. To study the relation between the specimen thickness and the resolution of the trans-mitted electron image obtained by the SEM, the following experiment was carried out.


Author(s):  
R. F. Schneidmiller ◽  
W. F. Thrower ◽  
C. Ang

Solid state materials in the form of thin films have found increasing structural and electronic applications. Among the multitude of thin film deposition techniques, the radio frequency induced plasma sputtering has gained considerable utilization in recent years through advances in equipment design and process improvement, as well as the discovery of the versatility of the process to control film properties. In our laboratory we have used the scanning electron microscope extensively in the direct and indirect characterization of sputtered films for correlation with their physical and electrical properties.Scanning electron microscopy is a powerful tool for the examination of surfaces of solids and for the failure analysis of structural components and microelectronic devices.


Author(s):  
S. Saito ◽  
H. Todokoro ◽  
S. Nomura ◽  
T. Komoda

Field emission scanning electron microscope (FESEM) features extremely high resolution images, and offers many valuable information. But, for a specimen which gives low contrast images, lateral stripes appear in images. These stripes are resulted from signal fluctuations caused by probe current noises. In order to obtain good images without stripes, the fluctuations should be less than 1%, especially for low contrast images. For this purpose, the authors realized a noise compensator, and applied this to the FESEM.Fig. 1 shows an outline of FESEM equipped with a noise compensator. Two apertures are provided gust under the field emission gun.


Author(s):  
Emil Bernstein

An interesting method for examining structures in g. pig skin has been developed. By modifying an existing technique for splitting skin into its two main components—epidermis and dermis—we can in effect create new surfaces which can be examined with the scanning electron microscope (SEM). Although this method is not offered as a complete substitute for sectioning, it provides the investigator with a means for examining certain structures such as hair follicles and glands intact. The great depth of field of the SEM complements the technique so that a very “realistic” picture of the organ is obtained.


Author(s):  
C.V.L. Powell

The overall fine structure of the eye in Placopecten is similar to that of other scallops. The optic tentacle consists of an outer columnar epithelium which is modified into a pigmented iris and a cornea (Fig. 1). This capsule encloses the cellular lens, retina, reflecting argentea and the pigmented tapetum. The retina is divided into two parts (Fig. 2). The distal retina functions in the detection of movement and the proximal retina monitors environmental light intensity. The purpose of the present study is to describe the ultrastructure of the retina as a preliminary observation on eye development. This is also the first known presentation of scanning electron microscope studies of the eye of the scallop.


Author(s):  
M. Osumi ◽  
N. Yamada ◽  
T. Nagatani

Even though many early workers had suggested the use of lower voltages to increase topographic contrast and to reduce specimen charging and beam damage, we did not usually operate in the conventional scanning electron microscope at low voltage because of the poor resolution, especially of bioligical specimens. However, the development of the “in-lens” field emission scanning electron microscope (FESEM) has led to marked inprovement in resolution, especially in the range of 1-5 kV, within the past year. The probe size has been cumulated to be 0.7nm in diameter at 30kV and about 3nm at 1kV. We have been trying to develop techniques to use this in-lens FESEM at low voltage (LVSEM) for direct observation of totally uncoated biological specimens and have developed the LVSEM method for the biological field.


Sign in / Sign up

Export Citation Format

Share Document