scholarly journals Design and Simulation of Stormwater Control Measures Using Automated Modeling

Water ◽  
2021 ◽  
Vol 13 (16) ◽  
pp. 2268
Author(s):  
Matej Radinja ◽  
Mateja Škerjanec ◽  
Sašo Džeroski ◽  
Ljupčo Todorovski ◽  
Nataša Atanasova

Stormwater control measures (SCMs) are decentralized technical elements, which can prevent the negative effects of uncontrolled stormwater flow while providing co-benefits. Optimal SCMs have to be selected and designed to achieve the desired hydrological response of an urban catchment. In this study, automated modeling and domain-specific knowledge in the fields of modeling rainfall-runoff (RR) and SCMs are applied to automate the process of optimal SCM design. A new knowledge library for modeling RR and SCMs, compliant with the equation discovery tool ProBMoT (Process-Based Modeling Tool), was developed. The proposed approach was used to a) find the optimal RR model that best fits the available pipe flow measurements, and b) to find the optimal SCMs design that best fits the target catchment outflow. The approach was applied to an urban catchment in the city of Ljubljana, Slovenia. First, nine RR models were created that generally had »very good« performance according to the Nash–Sutcliffe efficiency criteria. Second, six SCM scenarios (i.e., detention pond, storage tank, bio-retention cell, infiltration trench, rain garden, and green roof) were automatically designed and simulated, enabling the assessment of their ability to achieve the target outflow. The proposed approach enables the effective automation of two complex calibration tasks in the field of urban drainage.

2018 ◽  
Vol 10 (10) ◽  
pp. 3666 ◽  
Author(s):  
Andrew Erickson ◽  
Vinicius Taguchi ◽  
John Gulliver

The methods for properly executing inspection and maintenance of stormwater control measures are often ambiguous and inconsistently applied. This paper presents specific guidelines for inspecting and maintaining stormwater practices involving media filtration, infiltration, ponds, and permeable pavements because these tend to be widely implemented and often unsatisfactorily maintained. Guidelines and examples are based on recent scientific research and practitioner experience. Of special note are new assessment and maintenance methods, such as testing enhanced filtration media that targets dissolved constituents, maintaining proper vegetation coverage in infiltration practices, assessing phosphorus release from pond sediments, and the development of compressed impermeable regions in permeable pavements and their implications for runoff. Inspection and maintenance examples provided in this paper are drawn from practical examples in Northern Midwest USA, but most of the maintenance recommendations do not depend on regional characteristics, and guidance from around the world has been reviewed and cited herein.


2021 ◽  
pp. 118008
Author(s):  
Vera S. Koutnik ◽  
Jamie Leonard ◽  
Joel B. Glasman ◽  
Jaslyn Brar ◽  
Hatice Ceylan Koydemir ◽  
...  

Water ◽  
2018 ◽  
Vol 10 (11) ◽  
pp. 1582 ◽  
Author(s):  
Erin Rivers ◽  
Sara McMillan ◽  
Colin Bell ◽  
Sandra Clinton

Urban areas are increasingly adopting the use of ecologically-based technologies for stormwater management to mitigate the effects of impervious surface runoff on receiving water bodies. While stormwater control measures (SCMs) reduce runoff, their ability to influence ecosystem function in receiving streams is not well known. To understand the effect of SCMs on net ecosystem function in stream networks, we measured sediment denitrification in four streams across a gradient of urban and suburban residential development in Charlotte, NC. We evaluated the influence of SCM inputs on actual (DNF) and potential (DEA) denitrification activity in stream sediments at the SCM-stream confluence to quantify microbial processes and the environmental factors that control them. DNF was variable across sites, ranging from 0–6.60 mg-N·m−2·h−1 and highly correlated with in-stream nitrate (NO3-N) concentrations. Sites with a greater impervious area showed a pattern of significantly higher DEA rates upstream of the SCM compared to downstream, while sites with less imperviousness showed the opposite trend. We hypothesize that this is because of elevated concentrations of carbon and nitrogen provided by pond and wetland outflows, and stabilization of the benthic habitat by lower peak discharge. These results suggest that SCMs integrated into the watershed have the potential to create cascading positive effects on in-stream nutrient processing and thereby improve water quality; however, at higher levels of imperviousness, the capacity for SCMs to match the scale of the impacts of urbanization likely diminishes.


2019 ◽  
Vol 53 (7) ◽  
pp. 3634-3644 ◽  
Author(s):  
Jordyn M. Wolfand ◽  
Carolin Seller ◽  
Colin D. Bell ◽  
Yeo-Myoung Cho ◽  
Karl Oetjen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document