scholarly journals Can Managed Aquifer Recharge Overcome Multiple Droughts?

Water ◽  
2021 ◽  
Vol 13 (16) ◽  
pp. 2278
Author(s):  
Mengqi Zhao ◽  
Jan Boll ◽  
Jennifer C. Adam ◽  
Allyson Beall King

Frequent droughts, seasonal precipitation, and growing agricultural water demand in the Yakima River Basin (YRB), located in Washington State, increase the challenges of optimizing water provision for agricultural producers. Increasing water storage through managed aquifer recharge (MAR) can potentially relief water stress from single and multi-year droughts. In this study, we developed an aggregated water resources management tool using a System Dynamics (SD) framework for the YRB and evaluated the MAR implementation strategy and the effectiveness of MAR in alleviating drought impacts on irrigation reliability. The SD model allocates available water resources to meet instream target flows, hydropower demands, and irrigation demand, based on system operation rules, irrigation scheduling, water rights, and MAR adoption. Our findings suggest that the adopted infiltration area for MAR is one of the main factors that determines the amount of water withdrawn and infiltrated to the groundwater system. The implementation time frame is also critical in accumulating MAR entitlements for single-year and multi-year droughts mitigation. In addition, adoption behaviors drive a positive feedback that MAR effectiveness on drought mitigation will encourage more MAR adoptions in the long run. MAR serves as a promising option for water storage management and a long-term strategy for MAR implementation can improve system resilience to unexpected droughts.

2019 ◽  
Vol 25 (6) ◽  
pp. 841-846
Author(s):  
Heonseop Eom ◽  
Sami Flimban ◽  
Anup Gurung ◽  
Heejun Suk ◽  
Yongcheol Kim ◽  
...  

Managed aquifer recharge (MAR), an intentional storage of excess water to an aquifer, is becoming a promising water resource management tool to cope with the worldwide water shortage. Bioclogging is a commonly encountered operational issue that lowers hydraulic conductivity and overall performance in MAR. The current study investigates the impact of carbon and nitrogen in recharge water on bioclogging in MAR. For this investigation, continuous-flow columns packed with sand grains were operated with influents having 0 (C1), 5 (C2), and 100 mg/L (C3) of glucose with or without introduction of nitrate. Hydraulic conductivity was analyzed to evaluate bioclogging in the systems. In C1 and C2, hydraulic conductivity was not significantly changed overall. However, hydraulic conductivity in C3 was decreased by 28.5% after three weeks of operation, which appears to be attributed to generation of fermentation bacteria. Introduction of nitrogen to C3 led to a further decrease in hydraulic conductivity by 25.7% compared to before it was added, most likely due to stimulation of denitrifying bacteria. These findings indicate that high carbon contents and introduction of additional nitrogen in recharge water cause serious bioclogging in MAR, suggesting the necessity for controlling quality of recharge water.


Water ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1548
Author(s):  
Anthony Knapton ◽  
Declan Page ◽  
Joanne Vanderzalm ◽  
Dennis Gonzalez ◽  
Karen Barry ◽  
...  

The authors wish to make the following correction to this paper [...]


2021 ◽  
Author(s):  
Bridget R Scanlon ◽  
Ashraf Rateb ◽  
Hua Xie

<p>Access to water is a critical issue in Sub-Saharan Africa. The objective of our work was to assess spatiotemporal variability in water storage using GRACE satellites in the major aquifers and potential for development. Results show that Total Water Storage (TWS) variability tracked by GRACE satellites is dominated by interannual variability in most aquifer systems driven by dry and wet climate cycles, such as El Nino Southern Oscillation, Indian Ocean Dipole, Pacific Decadal Oscillation and others. Climate cycles result in systems being subjected to droughts or floods, which is challenging for water resources management. Linear trends in TWS were limited to west Africa attributed to land use change and north Africa linked to water use. Variability in storage of some reservoirs and groundwater hydrographs is similar to storage variability from GRACE satellites. Examples of approaches toward sustainable management of water resources include storage of excess flood water for use during droughts in surface reservoirs, conjunctive use of surface water and groundwater, and managed aquifer recharge. Understanding the linkages between climate cycles and water storage should help optimize water management within this framework.</p>


Author(s):  
William M. Alley ◽  
Rosemarie Alley

Managed aquifer recharge is a widespread and growing practice. In addition, using recycled water for groundwater recharge and water supply continues to grow as water resources are increasingly strained by population growth and climate change. Through a series of examples from around the world, the chapter illustrates the value as well as limitations of managed aquifer recharge and recycled water.


2020 ◽  
Author(s):  
Andreas Kallioras ◽  
Efthymios Chrysanthopoulos ◽  
Anastasios Mitropapas ◽  
Epaminondas Floros ◽  
Sofia Nalbadi ◽  
...  

<p>Groundwater is a limited resource in coastal hydrogeological systems, especially in semi-arid environments where the irrigation demands are very high. Management of such hydrosystems is a very challenging process; while water conflict between different users as well as climate change conditions are magnifying this problem.</p><p>Managed aquifer recharge – storing water in aquifers during times of excess – is considered as a sound engineering technique and a key strategy to support groundwater resources in such hydrologically sensitive regions by providing intermediate storage, bridging the gap between water demand and availability. In addition to the above, innovative modelling techniques that apply participatory approaches can be proved a valuable supporting tool for the management of groundwater resources within an optimized manner.</p><p>The coastal field of Argolis (S. Greece) is used as a reference site to illustrate the above, where Managed Aquifer Recharge is applied on a full-scale mode since 1990, using karst groundwater as a recharge water source. The study area involves an extended and complex water infrastructure systems that includes: (a) a main intake structure -a submarine dam exploiting a system of submarine karstic springs-; (b) a conveyance system -mainly open canal structures- that assures the transport of water from the main intake structure and main pumping station up to the agricultural area; and (c) a cluster of Managed Aquifer Recharge facilities that divert water towards the subsurface either through deep groundwater wells or infiltration ponds at selected parts of the aquifer.     </p><p>This research presents the results of hydro‐environmental modelling activities of Managed Aquifer Recharge and the preliminary work on participatory driven water resources modelling scenarios. This study is envisaged to contribute in the identification and valuation of socio‐economic and environmental processes and linkages of groundwater uses and services.</p>


HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 549f-550
Author(s):  
Mongi Zekri ◽  
Bruce Schaffer ◽  
Stephen K. O'Hair ◽  
Roberto Nunez-Elisea ◽  
Jonathan H. Crane

In southern Florida, most tropical fruit crops between Biscayne and Everglades National Parks are irrigated at rates and frequencies based on experience and observations of tree growth and fruit yield rather than on reliable quantitative information of actual water use. This approach suggests that irrigation rates may be excessive and could lead to leaching of agricultural chemicals into the groundwater in this environmentally sensitive area. Therefore, a study is being conducted to increase water use efficiency and optimize irrigation by accurately scheduling irrigation using a very effective management tool (EnviroScan, Sentek Environmental Innovations, Pty., Kent, Australia) that continuously monitors soil water content with highly accurate capacitance multi-sensor probes installed at several depths within the soil profile. The system measures crop water use by monitoring soil water depletion rates and allows the maintenance of soil water content within the optimum range (below field capacity and well above the onset of plant water stress). The study is being conducted in growers' orchards with three tropical fruit crops (avocado, carambola, and `Tahiti' lime) to facilitate rapid adoption and utilization of research results.


Sign in / Sign up

Export Citation Format

Share Document