scholarly journals Salt Leaching with Brackish Water during Growing Season Improves Cotton Growth and Productivity, Water Use Efficiency and Soil Sustainability in Southern Xinjiang

Water ◽  
2021 ◽  
Vol 13 (18) ◽  
pp. 2602 ◽  
Author(s):  
Chao Xiao ◽  
Meng Li ◽  
Junliang Fan ◽  
Fucang Zhang ◽  
Yi Li ◽  
...  

Low water use efficiency and soil salinization are two main factors limiting cotton production in southern Xinjiang. A field experiment was conducted to investigate the effects of brackish water irrigation levels on cotton growth, yield and soil water–salt dynamics in southern Xinjiang, so as to provide a theoretical and experimental basis for the development and utilization of brackish water. There were three irrigation levels: W1 (75 mm + 80%ETc), W2 (150 mm + 80%ETc) and W3 (240 mm + 80%ETc) at the seeding stage (S1), seeding stage + budding stage (S2) and seeding stage + budding stage + flowering stage (S3), with an irrigation amount of 450 mm during spring as the CK (the local reference level) (10 treatments in total). The salt of the local brackish water used was 3 g·L−1. Film-mulched drip irrigation experiments were conducted to observe cotton growth, aboveground dry matter, cotton yield, soil water and salt distribution, as well as other indicators. The results showed that the irrigation applications of S3 can improve the soil moisture and salt distribution of the root zone. The salt accumulation at the harvest stage of W3S3 was reduced by 39.5% and 2.8% compared with W3S1 and W3S2, respectively. More frequent irrigation applications can reduce a soil’s total dissolved solids (TDS), avoid exceeding the salt tolerance threshold of 4.8 g kg−1 and lead to higher aboveground dry matter and cotton yields. W3S3 obtained the highest yield of 5685 kg ha−1, which was increased by 39.59%, 7.85% and 11.25% compared with W3S1, W3S2 and CK, respectively. The higher the irrigation amount, the less water use efficiency (WUE), following the order of S3 > S2 > S1 > CK at various growth stages. W3S1 obtained the lowest WUE of 0.64 kg·m−3. Comprehensively considering the effects of soil moisture retention and salt suppression, cotton growth, yield and water use efficiency, an irrigation amount of 240 mm brackish water at three growth stages, with 80%ETc for irrigation, is recommended for the sustainable production of cotton in southern Xinjiang.

Author(s):  
Muhammad Asad ◽  
Ashfaq Ahmad ◽  
Tasneem Khaliq ◽  
Shahid Afghan ◽  
Muhammad Bilal Anwer Nadeem Saleem ◽  
...  

2009 ◽  
Vol 35 (2) ◽  
pp. 324-333 ◽  
Author(s):  
Peng-Fei CHU ◽  
Zhen-Wen YU ◽  
Xiao-Yan WANG ◽  
Tong-Hua WU ◽  
Xi-Zhi WANG

2012 ◽  
Vol 212-213 ◽  
pp. 578-585
Author(s):  
Zhong Wen Yang ◽  
Jun Ying Jin ◽  
Xin Yi Xu

Water stress is an important approach to use water resources efficiently and remit the agricultural water shortage. Hemarthria compressa is one of perennial grasses, a pasture of high quality, which has abundant species resources in China. To explore the response of the growth, yield and water use efficiency(WUE) of Hemarthria compressa under water stress, this study, adapting pot experiment, imposed three water stress degree (LD, MD and SD) treatments and a control treatment on Hemarthria compressa. The data of growth indicators during control period, yield and total water consumption were obtained. The results show a noticeable inhibitory action of water stress on the growth of Hemarthria compressa. Along with the intensifying of water stress, plant height increment, leaf area, total biomass, dry matter of each organ and yield decreased, and the root-shoot ratio increased firstly and inclined to slump finally. Plants under the middle water stress treatment achieved the greatest WUE of 38.25 kg/m3. The first 10d in the water control period was the most sensitive period of the pasture responding to water stress.


Helia ◽  
2001 ◽  
Vol 24 (35) ◽  
pp. 111-128
Author(s):  
Víctor M. Olalde G. ◽  
J. Alberto Escalante E. ◽  
Angel A. Mastache L.

SUMMARYDuring the rainy season of 1998, a field experiment was established in Cocula, Guerrero (hot subhumid climate, Awo) and in Montecillo, México (semiarid climate, BS1), to evaluate the effect of nitrogen (0, 10 and 20 g m-2) and environment on phenology, yield and its components, water use efficiency (WUE), and crop evapotranspiration (ETc) and heat units (HU) accumulated during the growth cycle of sunflower (Helianthus annuus L.) cv. Victoria. The crop was planted on June 1 at a density of 7.5 pl m-2 in both climates. In Cocula, maximum and minimum temperatures were more extreme and rainfall was more intense, while soil was poor in total nitrogen, compared with Montecillo. Crop growth, yield and its components, and water use efficiency were affected significantly by the environment, nitrogen and the interaction environment * nitrogen. The crop cycle in the hot environment was 36 days shorter, with a greater accumulation of HU and ETc. Yield and its components and water use efficiency were significantly higher in Cocula. Nitrogen positively affected the evaluated variables. The interactive effect of environment * nitrogen was observed clearly, since in Cocula there was response to the application of nitrogen in most of the variables evaluated, while in Montecillo there was not.


2022 ◽  
Vol 175 ◽  
pp. 114244
Author(s):  
Kai Wei ◽  
Jihong Zhang ◽  
Quanjiu Wang ◽  
Yi Guo ◽  
Weiyi Mu

Sign in / Sign up

Export Citation Format

Share Document