scholarly journals Effects of Drying-Rewetting Cycles on Ferrous Iron-Involved Denitrification in Paddy Soils

Water ◽  
2021 ◽  
Vol 13 (22) ◽  
pp. 3212
Author(s):  
Yushuai Zhang ◽  
Baokun Xu ◽  
Jiangpei Han ◽  
Liangsheng Shi

Soil moisture status has an important effect on the process of denitrification in paddy soils. However, it is unclear how it affects the ferrous iron-involved denitrification. Here, the influence of drying-rewetting cycles on ferrous iron-involved denitrification in paddy soil were studied with batch experiments. The dynamics of nitrate, ammonia, Fe2+, Fe3+ and total organic carbon (TOC), as well as nitrous oxide (N2O) were investigated using the iron-rich paddy soil in Jiangxi province, South China. Results demonstrated that the denitrification rate dropped while ammonia nitrogen content (NH4+-N) showed a rapid accumulation in the drying period. In the rewetting period, organic carbon played two-side roles. Organic carbon and ferrous iron together provided electron donors to denitrification, and organic carbon simultaneously reduced ferric iron under anaerobic environment. There were complex interactions among organic carbon, nitrate and Fe2+/Fe3+ under drying-rewetting cycles. Soil rewetting led to denitrification flush, especially after a moderately long drying period, while excessively frequent drying-rewetting alternation was not favorable to nitrate denitrification.

2014 ◽  
Vol 38 (6) ◽  
pp. 626-634
Author(s):  
TIAN Wen-Wen ◽  
◽  
WANG Wei ◽  
CHEN An-Lei ◽  
LI Yu-Yuan ◽  
...  

2004 ◽  
Vol 68 (3) ◽  
pp. 789 ◽  
Author(s):  
Atinut Saejiew ◽  
Olivier Grunberger ◽  
Somsri Arunin ◽  
Fabienne Favre ◽  
Daniel Tessier ◽  
...  

Chemosphere ◽  
2021 ◽  
Vol 274 ◽  
pp. 129971
Author(s):  
Ibrahim Mohamed ◽  
Mohamed A. Bassouny ◽  
Mohamed H.H. Abbas ◽  
Zhan Ming ◽  
Cao Cougui ◽  
...  

2011 ◽  
Vol 183-185 ◽  
pp. 1190-1194
Author(s):  
Jun Ke Zhang ◽  
Qing Ju Hao ◽  
Chang Sheng Jiang ◽  
Yan Wu

The impact of conservation tillage practices on carbon sequestration has been of great interest in recent years. This experiment analyzed the organic carbon status of soils sampled at depth increments from 0 to 60 cm after 20 years in a purple paddy soil. The tillage experiment was established in the Key Field Station for Monitoring of Eco-Environment of Purple Soil of the Ministry of Agriculture of China, located in the farm of Southwest University (30°26′N, 106°26′E), Chongqing. In this paper, five tillage treatments including conventional tillage with rice only system (DP), conventional tillage with rotation of rice and rape system (SL), no-till and ridge culture with rotation of rice and rape system (LM), no-till and plain culture with rotation of rice and rape system (XM) and tillage and ridge culture with rotation of rice and rape system (LF) were selected as research objectives to measure SOC storage and stratification ratio of SOC (CSR). The SOC storage under different tillage systems was calculated based on an equivalent soil mass. The CSR can be used as an indicator of soil quality because surface organic matter is essential to erosion control, water infiltration, and the conservation of nutrients. Results showed that in soil under no-till SOC was concentrated near the surface, while in tilled soil SOC decreased equably with the increase of soil depth. The difference of SOC contents between the five tillage systems was the largest in the top soil and the lowest in the bottom soil. The order of SOC storage was LM (158.52 Mg C•ha-1) >DP (106.74 Mg C•ha-1) >XM (100.11 Mg C•ha-1) >LF (93.11 Mg C•ha-1) >SL (88.59 Mg C•ha-1), LM treatment was significantly higher than the other treatments. The CSR of 0-10/50-60 cm was 2.65, 2.70 and 2.14 under LM, XM and LF treatments, while 1.54 and 1.92 under DP and SL treatments. We considered CSR>2 indicate an improvement in soil quality produced by changing from tillage to no-tillage, as well as changing from plane to ridge. Overall, long-term LM treatment is a valid strategy for increasing SOC storage and improving soil quality in a purple paddy soil in Southwest China.


Pedosphere ◽  
2022 ◽  
Vol 32 (2) ◽  
pp. 348-358
Author(s):  
Nasrin SULTANA ◽  
Jun ZHAO ◽  
Yuanfeng CAI ◽  
G.K.M. Mustafizur RAHMAN ◽  
Mohammad Saiful ALAM ◽  
...  
Keyword(s):  

2012 ◽  
Vol 9 (3) ◽  
pp. 1237-1251 ◽  
Author(s):  
C. Mueller-Niggemann ◽  
A. Bannert ◽  
M. Schloter ◽  
E. Lehndorff ◽  
L. Schwark

Abstract. In order to assess the intrinsic heterogeneity of paddy soils, a set of biogeochemical soil parameters was investigated in five field replicates of seven paddy fields (50, 100, 300, 500, 700, 1000, and 2000 yr of wetland rice cultivation), one flooded paddy nursery, one tidal wetland (TW), and one freshwater site (FW) from a coastal area at Hangzhou Bay, Zhejiang Province, China. All soils evolved from a marine tidal flat substrate due to land reclamation. The biogeochemical parameters based on their properties were differentiated into (i) a group behaving conservatively (TC, TOC, TN, TS, magnetic susceptibility, soil lightness and colour parameters, δ13C, δ15N, lipids and n-alkanes) and (ii) one encompassing more labile properties or fast cycling components (Nmic, Cmic, nitrate, ammonium, DON and DOC). The macroscale heterogeneity in paddy soils was assessed by evaluating intra- versus inter-site spatial variability of biogeochemical properties using statistical data analysis (descriptive, explorative and non-parametric). Results show that the intrinsic heterogeneity of paddy soil organic and minerogenic components per field is smaller than between study sites. The coefficient of variation (CV) values of conservative parameters varied in a low range (10% to 20%), decreasing from younger towards older paddy soils. This indicates a declining variability of soil biogeochemical properties in longer used cropping sites according to progress in soil evolution. A generally higher variation of CV values (>20–40%) observed for labile parameters implies a need for substantially higher sampling frequency when investigating these as compared to more conservative parameters. Since the representativeness of the sampling strategy could be sufficiently demonstrated, an investigation of long-term carbon accumulation/sequestration trends in topsoils of the 2000 yr paddy chronosequence under wetland rice cultivation restricted was conducted. Observations cannot be extrapolated to global scale but with coastal paddy fields developed on marine tidal flat substrates after land reclamation in the Zhejiang Province represent a small fraction (<1%) of the total rice cropping area. The evolutionary trend showed that the biogeochemical signatures characteristic for paddy soils were fully developed in less than 300 yr since onset of wetland rice cultivation. A six-fold increase of topsoil TOC suggests a substantial gain in CO2 sequestration potential when marine tidal wetland substrate developed to 2000 yr old paddy soil.


1994 ◽  
Vol 30 (12) ◽  
pp. 297-306 ◽  
Author(s):  
Joseph Akunna ◽  
Claude Bizeau ◽  
René Moletta ◽  
Nicolas Bernet ◽  
Alain Héduit

Two laboratory upflow aerobic and anaerobic filters fed with synthetic wastewaters were used to study firstly the effects of aeration rate on the nitrification of anaerobically pre-treated effluents and secondly the effects of recycle-to-influent ratios on methane production rate, denitrification and nitrification performances of a combined aerobic and anaerobic wastewater treatment process. Nitrification of anaerobically pre-treated effluent was accompanied by aerobic post-treatment for residual COD removal. A comparison of nitrification performances using autotrophic medium and anaerobically pre-treated effluents (containing 1203 mg COD 1−1) with the same ammonia nitrogen concentration of about 300 mg NH4-N 1−1 showed that 3% of added ammonia nitrogen was assimilated by autotrophic nitrifiers during nitrification of the autotrophic medium while up to 30% was assimilated by both nitrifiers and heterotrophs during organic carbon removal and nitrification of anaerobically pre-treated effluent. Furthermore, it was suspected that significant nitrogen loss through denitrification occured in the aerobic filter especially at low aeration rates. In the study of the combined aerobic-anaerobic system, maximum ammonia nitrogen removal of 70% through denitrification was obtained at recycle-to-influent ratios of 4 and 5. COD removal efficiency in the anaerobic filter decreased from 77 to 60% for recycle-to-influent ratios of zero to 5. Overall COD removal efficiency of the entire system was constant at about 99% due to heterotrophic COD removal in the aerobic filter.


Sign in / Sign up

Export Citation Format

Share Document