scholarly journals Treatment of Actual Winery Wastewater by Fenton-like Process: Optimization to Improve Organic Removal, Reduce Inorganic Sludge Production and Enhance Co-Treatment at Municipal Wastewater Treatment Facilities

Water ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 39
Author(s):  
Melody Blythe Johnson ◽  
Mehrab Mehrvar

Despite many wineries being equipped with onsite wastewater treatment, winery wastewater (WWW) co-treatment at municipal wastewater treatment plants (WWTPs) remains a common practice in wine-making regions. The complex and highly variable nature of WWW can result in negative impacts on WWTP operations, highlighting a need for improved co-treatment methods. In this paper, the feasibility of using the Fenton-like process to pre-treat WWW to enhance co-treatment at municipal WWTPs is assessed. First-stage pre-treatment of the WWW, in the form of dilution and settling or aerobic biological treatment, is used prior to the Fenton-like process. A three-factor BBD experimental design is used to identify optimal reaction time and initial H2O2 and Fe3+ concentrations. Chemical oxygen demand (COD) and total organic carbon (TOC) removal rates are not able to accurately reflect the extent of reaction. Additional trials identified solubilization of particulate COD and TOC, as well as samples handling requirements prior to analysis, as factors affecting the apparent COD and TOC removal rates. Inert suspended solids (ISS) generated during the sample handling process are found to be the response variable best suited to quantifying the extent of the Fenton-like reaction. Maximum ISS generation is observed at initial H2O2 and Fe3+ concentrations of 4000 mg/L and 325 mg/L, however, results suggest that optimal concentrations exceed these values. The impact of adding pre-treated WWW, with and without Fenton-like treatment, to municipal WWTPs’ primary clarifiers and aerobic bioreactors is also assessed via bench-scale trials. Challenges associated with co-treating WWW are found to remain despite the pre-treatment alternatives investigated, including negative impacts on simulated primary and secondary effluent quality. The Fenton-like AOP provides limited opportunity to optimize or enhance co-treatment at municipal WWTPs.

2011 ◽  
Vol 6 (1) ◽  
Author(s):  
A. Iborra-Clar ◽  
J.A. Mendoza-Roca ◽  
A. Bes-Pií ◽  
J.J. Morenilla-Martínez ◽  
I. Bernácer-Bonora ◽  
...  

Rainfall diminution in the last years has entailed water scarcity in plenty of European regions, especially in Mediterranean areas. As a consequence, regional water authorities have enhanced wastewater reclamation and reuse. Thus, the implementation of tertiary treatments has become of paramount importance in the municipal wastewater treatment plants (WWTP) of Valencian Region (Spain). Conventional tertiary treatments consist of a physico-chemical treatment of the secondary effluent followed by sand filtration and UV radiation. However, the addition of coagulants and flocculants sometimes does not contribute significantly in the final water quality. In this work, results of 20-months operation of three WWTP in Valencian Region with different tertiary treatments (two without chemicals addition and another with chemicals addition) are discussed. Besides, experiments with a 2 m3/h pilot plant located in the WWTP Quart-Benager in Valencia were performed in order to evaluate with the same secondary effluent the effect of the chemicals addition on the final water quality. Results showed that the addition of chemicals did not improve the final water quality significantly. These results were observed both comparing the three full scale plants and in the pilot plant operation.


1994 ◽  
Vol 30 (4) ◽  
pp. 125-132 ◽  
Author(s):  
D. Carnimeo ◽  
E. Contini ◽  
R. Di Marino ◽  
F. Donadio ◽  
L. Liberti ◽  
...  

The pilot investigation on the use of UV as an alternative disinfectant to NaOCI was started in 1992 at Trani (South Italy) municipal wastewater treatment plant (335 m3/h). The results collected after six months continuous operation enabled us to compare UV and NaOCl disinfection effectiveness on the basis of secondary effluent characteristics, quantify photoreactivation effects, evidence possible DBP formation and assess costs.


1997 ◽  
Vol 35 (6) ◽  
pp. 63-70 ◽  
Author(s):  
Yoshimasa Watanabe ◽  
Yoshihiko Iwasaki

This paper describes a pilot plant study on the performance of a hybrid small municipal wastewater treatment system consisting of a jet mixed separator(JMS) and upgraded RBC. The JMS was used as a pre-treatment of the RBC instead of the primary clarifier. The treatment capacity of the system was fixed at 100 m3/d, corresponding to the hydraulic loading to the RBC of 117 L/m2/d. The effluent from the grid chamber at a municipal wastewater treatment plant was fed into the hybrid system. The RBC was operated using the electric power produced by a solar electric generation panel with a surface area of 8 m2 under enough sunlight. In order to reduce the organic loading to the RBC, polyaluminium chloride(PAC) was added to the JMS influent to remove the colloidal and suspended organic particles. At the operational condition where the A1 dosage and hydraulic retention time of the JMS were fixed at 5 g/m3 and 45 min., respectively, the average effluent water quality of hybrid system was as follows: TOC=8 g/m3, Total BOD=8 g/m3, SS=8 g/m3, Turbidity=6 TU, NH4-N=7 g/m3, T-P=0.5 g/m3. In this operating condition, electric power consumption of the RBC for treating unit volume of wastewater is only 0.07 KWH/m3.


2000 ◽  
Vol 41 (7) ◽  
pp. 31-37 ◽  
Author(s):  
E. Carraro ◽  
E. Fea ◽  
S. Salva ◽  
G. Gilli

The aim of this study was to assess the impact of a municipal wastewater treatment plant (MWTP) on the occurrence of Cryptosporidium oocysts and Giardia cysts in the receiving water. All MWTP effluent samples were Giardia and Cryptosporidium contaminated, although low mean values were found for both parasites (0.21±0.06 oocysts/L; 1.39±0.51 cysts/L). Otherwise, in the raw sewage a greater concentration was detected (4.5±0.3 oocysts/L; 53.6±6.8 cysts/L). The major occurrence of Giardia over Cryptosporidium, both in the influent and in the effluent of the MWTP, is probably related to the human sewage contribution to the wastewater. Data on protozoa contamination of the receiving water body demonstrated similar concentrations in the samples collected before (0.21±0.07 oocysts/L; 1.31±0.38 cysts/L) and after (0.17±0.09 oocysts/L and 1.01±1.05 cysts/L) the plant effluent discharge. The results of this study suggest that the MWTP has no impact related to Giardia and Cryptosporidium river water contamination, and underline the need for investigation into the effectiveness of these protozoa removal by less technologically advanced MWTPs which are the most widespread and could probably show a lower ability to reduce protozoa.


2003 ◽  
Vol 48 (1) ◽  
pp. 77-85 ◽  
Author(s):  
X.-D. Hao ◽  
M.C.M. van Loosdrecht

Water problems have to be solved in an integrated way, and sustainability has become a major issue. For this reason, developing more sustainable wastewater treatment processes is needed. New discoveries and good understanding on microbial conversions of nitrogen and phosphorus make more sustainable processes possible. New options for decentralized sustainable sanitation are generally compared to conventional sewage systems, we think that for a proper comparison also innovative centralized treatment schemes should be evaluated. In this article, a more sustainable WWTP is proposed for municipal wastewater treatment, mainly based on the principles of denitrifying dephosphatation and anaerobic ammonium oxidation (ANAMMOX). The proposed system consists of a first stage of the A/B process in which maximal sludge production is achieved. In this way, COD is regained as sludge for methanation. The following BCFS® and CANON processes can remove N and P with minimal or no COD need. As a potential fertiliser, struvite can easily be removed from the sludge water by adding magnesium compounds. A case study is done on the basis of the mass balance over the proposed plant. The effluent from the system has a good quality to be recycled. This could also make a contribution to meeting the world's water needs and lessening the impact on the world's water environment. Since all the separate units are already applied or tested on pilot-scale, no problems for technical implementation are foreseen.


2018 ◽  
Vol 77 (11) ◽  
pp. 2723-2732 ◽  
Author(s):  
Xiaowei Zheng ◽  
Shenyao Zhang ◽  
Jibiao Zhang ◽  
Deying Huang ◽  
Zheng Zheng

Abstract With the improvement of wastewater discharge standards, wastewater treatment plants (WWTPs) are continually undergoing technological improvements to meet the evolving standards. In this study, a quartz sand deep bed denitrification filter (DBDF) was used to purify WWTP secondary effluent, utilizing high nitrate nitrogen concentrations and a low C/N ratio. Results show that more than 90% of nitrate nitrogen (NO3-N) and 75% of chemical oxygen demand (COD) could be removed by the 20th day of filtration. When the filter layer depth was set to 1,600 mm and the additional carbon source CH3OH was maintained at 30 mg L−1 COD (20 mg L−1 methanol), the total nitrogen (TN) and COD concentrations of DBDF effluent were stabilized below 5 and 30 mg L−1, respectively. Analysis of fluorescence revealed that DBDF had a stronger effect on the removal of dissolved organic matter (DOM), especially of aromatic protein-like substances. High throughput sequencing and qPCR results indicate a distinctly stratified microbial distribution for the main functional species in DBDF, with quartz sand providing a good environment for microbes. The phyla Proteobacteria, Bacteroidetes, and Chloroflexi were found to be the dominant species in DBDF.


2017 ◽  
Author(s):  
Travis C. Korosh ◽  
Andrew Dutcher ◽  
Brian F. Pfleger ◽  
Katherine D. McMahon

ABSTRACTSide-streams in wastewater treatment plants can serve as concentrated sources of nutrients (i.e. nitrogen and phosphorus) to support the growth of photosynthetic organisms that ultimately serve as feedstock for production of fuels and chemicals. However, other chemical characteristics of these streams may inhibit growth in unanticipated ways. Here, we evaluated the use of liquid recovered from municipal anaerobic digesters via gravity belt filtration as a nutrient source for growing the cyanobacteriumSynechococcussp. strain PCC 7002. The gravity belt filtrate (GBF) contained high levels of complex dissolved organic matter (DOM), which seemed to negatively influence cells. We investigated the impact of GBF on physiological parameters such as growth rate, membrane integrity, membrane composition, photosystem composition, and oxygen evolution from photosystem II. At 37°C, we observed an inverse correlation between GBF concentration and membrane integrity. Radical production was also detected upon exposure to GBF at 37°C. However, at 27°C the dose dependent relationship between GBF concentration and lack of membrane integrity was abolished. Immediate resuspension of strains in high doses of GBF showed markedly reduced oxygen evolution rates relative to the control. Together, this suggests that one mechanism responsible for GBF toxicity toSynechococcusis the interruption of photosynthetic electron flow and subsequent phenomena. We hypothesize this is likely due to the presence of phenolic compounds within the DOM.IMPORTANCECyanobacteria are viewed as promising platforms to produce fuels and/or high-value chemicals as part of so-called “bio-refineries”. Their integration into wastewater treatment systems is particularly interesting because removal of the nitrogen and phosphorus in many wastewater streams is an expensive but necessary part of wastewater treatment. In this study, we evaluated strategies for cultivatingSynechococcusstrain PCC 7002 on media comprised of two wastewater streams; treated secondary effluent supplemented with the liquid fraction extracted from sludge following anaerobic digestion. This strain is commonly used for metabolic engineering to produce a variety of valuable chemical products and product precursors (e.g. lactate). However, initial attempts to grow PCC 7002 under otherwise standard conditions of light and temperature failed. We thus systematically evaluated alternative cultivation conditions and then used multiple methods to dissect the apparent toxicity of the media under standard cultivation conditions.


Sign in / Sign up

Export Citation Format

Share Document