scholarly journals Implications of Human Activities, Land Use Changes and Climate Variability in Mediterranean Lakes of Greece

Water ◽  
2016 ◽  
Vol 8 (11) ◽  
pp. 483 ◽  
Author(s):  
Konstantinos Stefanidis ◽  
Aikaterini Kostara ◽  
Eva Papastergiadou
2021 ◽  
Author(s):  
Qing He ◽  
Kwok Pan Chun ◽  
Omer Yetemen ◽  
Bastien Dieppois ◽  
Liang Chen ◽  
...  

<p>Disentangling the effects of climate and land use changes on regional hydrological conditions is critical for local water and food security. The water variability over climate transition regions at the midlatitudes is sensitive to changes in regional climate and land use. Gansu, located in northwest China, is a midlatitude climate transition region with sharp climate and vegetation gradients. In this study, the effects of climate and land‑use changes on water balances are investigated over Gansu between 1981 and 2015 using a Budyko framework. Results show that there is reduced runoff generation potential over Gansu during 1981 and 2015, especially in the southern part of the region. Based on statistical scaling relationships, local runoff generation potential over Gansu are related to the El Nino-Southern Oscillation (ENSO). Intensified El Nino conditions weaken the Asian monsoons, leading to precipitation deficits over Gansu. Moreover, the regional evapotranspiration (ET) is increasing due to the warming temperature. The decreasing precipitation and increasing ET cause the decline of runoff generation potential over Gansu. Using the dynamical downscaling model outputs, the Budyko analysis indicates that increasing coverage of forests and croplands may lead to higher ET and may reduce runoff generation potential over Gansu. Moreover, the contributions of climate variability and land‑use changes vary spatially. In the southwest part of Gansu, the impacts of climate variability on water variations are larger (around 80%) than that of land‑use changes (around 20%), while land use changes are the dominant drivers of water variability in the southeast part of the region. The decline of runoff generation potential reveals a potential risk for local water and food security over Gansu. The water‑resource assessment approach developed in this study is applicable for collaborative planning at other climate transition regions at the midlatitudes with complex climate and land types for the Belt and Road Initiative.</p>


2021 ◽  
Vol 16 (1) ◽  
pp. 105-122
Author(s):  
Sema Yılmaz Genç ◽  
Arian Behradfar ◽  
Rui Alexandre Castanho ◽  
Derviş Kırıkkaleli ◽  
José Manuel Naranjo Gómez ◽  
...  

Human activities have been changing the Earth's cover at an unparalleled scale. In this regard, and cover mapping is a decisive advantage for several kinds of research. Also, the outcomes from these investigations could be applied to plan a sustainable regional governance policy. This article studied land-use changes in the Turkish Territories in 1990, 2000, 2012, and 2018 using the Coordination of Information on the Environment (CORINE) data. The results showed a significant and gradual land-use change from agricultural to mostly artificial surfaces. The majority of land-use changes are related to industrial and commercial units and construction sites. The most degraded agricultural land uses are non-irrigated arable land and pastures, while there is an increasing trend in permanently irrigated land. This study's outcome can be considered a surveying baseline for the comparative analysis of similar works for different land-use change trends in Europe or worldwide. Landuse change studies are reliable tools to evaluate the human activities and footprint of proposed strategies and policies in a territory. This article also enables us to understand that Turkey's decisive actors should design development policies to encourage industrial investments and agricultural ventures in Turkey and adapt the land-use/land cover strategies to mitigate agricultural land fragmentation.


2015 ◽  
Vol 17 (4) ◽  
pp. 870-881 ◽  

<div> <p>In this study, we investigated the separate and combined impacts of climate and land-use changes on hydrological response in the Central Highlands of Vietnam during the period 1981-2009. The Mann-Kendall and Pettit tests were applied to detect the trends in the hydro-meteorological data. The Soil and Water Assessment Tool (SWAT) was setup in the region, and evaluation based on daily data highlights the models adequacy. From this, the responses of hydrology to climate variability and land-use changes were considered. Overall, variability in climate seems to strongly drive the variability in the hydrological response in comparison to alternations in the hydrological regime due to land-use change during the period 1981-2009. The results indicate that land-use change had a minor impact on the annual flow (0.4% reduction), whilst the impact from climate variability had been more significant (13.5% change). Under the impact of coupled climate variability and land-use change, the annual streamflow increased by 13.1%.</p> </div> <p>&nbsp;</p>


2018 ◽  
Vol 7 (3.29) ◽  
pp. 115
Author(s):  
Elroy Koyari ◽  
Runi Asmaranto

Flood is a natural phenomenon that occurs in certain places due to natural causes and human activities. However, the imbalance in hydrological cycle will cause the flood to do damage, both materially and non-materially. Therefore, it is important to control the occurrence and magnitude. Human activities that can cause such imbalance, one of them, is land use change. Many areas of pervious area are shifting into impervious areas, which will increase the amount of surface runoff generated. This research will cover about how land use changes over the year can influence the surface runoff generated in a certain area. This research is conducted in Sentani watershed, Jayapura, Papua, Indonesia. Calculation with the aid of ArcMap 10.1 and WinTR-20 results in around 6% changes in flood discharge in the outlet for land use in year 2007, 2010, 2012, and 2016. The reservoir capacity in reducing flood discharge is also increasing over the years.   


2019 ◽  
Vol 11 (2) ◽  
pp. 505 ◽  
Author(s):  
Nangware Msofe ◽  
Lianxi Sheng ◽  
James Lyimo

Land use change (LUC) driven by human activities and natural factors has resulted in the global loss of native biodiversity and the alteration of ecological processes and services across different ecosystems. It is thus necessary to analyze the trends and driving factors that influence land use changes. In this study, moderate resolution Landsat images were freely downloaded from the United States Geological Survey (USGS) archives, analyzed using the random forest (RF) algorithm and mapped in ArcGIS 10.2 software to examine the LUC trends from 1990 to 2016 in the Kilombero valley floodplain (KVFP), Tanzania. Participatory rural appraisals (PRA) and household questionnaire surveys were used to assess the potential drivers of LUC. The results show that, from 1990 to 2016, the agricultural land and grassland increased by 11.3% and 13.3%, respectively, while the floodplain wetland area decreased from 4.6% in 1990 to 0.9% in 2016. Based on a questionnaire survey, the intensification of human activities was identified as the proximate driver while population growth, a growing market demand and price incentives for agricultural and forest products coupled with improved infrastructure and biophysical factors such as soil properties, climate variability and terrain characteristics were identified as the underlying drivers of LUC. However, there is interplay among these factors acting simultaneously as well as differently that influence land use changes. Based on these findings, future sustainable land management strategies should include the introduction of the alternative environmentally friendly sources of livelihood, such as beekeeping, the promotion of community participation and education on the importance of sustainable wetland management.


2020 ◽  
pp. 125650
Author(s):  
L.C. Gomes ◽  
F.J.J.A. Bianchi ◽  
I.M. Cardoso ◽  
R.P.O. Schulte ◽  
R.B.A. Fernandes ◽  
...  

2020 ◽  
Author(s):  
Xini Zha

&lt;p&gt;&lt;br&gt;Change detection and attribution of water cycle are increasingly crucial for promoting society&amp;#8216;s capacity to embed adaptation planning confronting both climate change and anthropogenic forces at catchment scale. Nevertheless, current researches either neglect the difference between internal climate variability and climate change (including internal climate variability and external radiative forcing) or don&amp;#8217;t consider different anthropogenic activities (e.g. land use changes, reservoir operation and water consumption). In this study, a new stepwise multiply scenarios approach (SMSA), using model simulations of the Fifth Coupled Model Intercomparison Project (CMIP5) archive and the new generation Soil and Water Assessment Tool (SWAT), dubbed SWAT+ model to identify and quantify influence of total five different factors (internal climate variability, external radiative forcing, land use changes, reservoir operation and water consumption) on inter-annual and seasonal hydrological alteration. Application of this approach to a perennial basin in Southeast China highlights the role of reservoir operation.&amp;#160;&lt;/p&gt;


Sign in / Sign up

Export Citation Format

Share Document