Attribution of inter-annual and seasonal hydrological alteration to climatic and anthropologic changes at a perennial basin in Southeast China

Author(s):  
Xini Zha

<p><br>Change detection and attribution of water cycle are increasingly crucial for promoting society‘s capacity to embed adaptation planning confronting both climate change and anthropogenic forces at catchment scale. Nevertheless, current researches either neglect the difference between internal climate variability and climate change (including internal climate variability and external radiative forcing) or don’t consider different anthropogenic activities (e.g. land use changes, reservoir operation and water consumption). In this study, a new stepwise multiply scenarios approach (SMSA), using model simulations of the Fifth Coupled Model Intercomparison Project (CMIP5) archive and the new generation Soil and Water Assessment Tool (SWAT), dubbed SWAT+ model to identify and quantify influence of total five different factors (internal climate variability, external radiative forcing, land use changes, reservoir operation and water consumption) on inter-annual and seasonal hydrological alteration. Application of this approach to a perennial basin in Southeast China highlights the role of reservoir operation. </p>

2021 ◽  
Vol 13 (18) ◽  
pp. 10153
Author(s):  
Fang Zhao ◽  
Xincan Lan ◽  
Wuyang Li ◽  
Wenbo Zhu ◽  
Tianqi Li

Land use changes affect the surface radiative budget and energy balance by changing the surface albedo, which generates radiative forcing, impacting the regional and global climate. To estimate the effect of land use changes on the surface albedo and climate change in a mountainous area with complex terrain, we obtained MODIS data, identified the spatial–temporal characteristics of the surface albedo caused by land use changes, and then calculated the radiative forcing based on solar radiative data and the surface albedo in the Qinling-Daba mountains from 2000 to 2015. The correlation between the land use changes and the radiative forcing was analyzed to explore the climate effects caused by land use changes on a kilometer-grid scale in the Qinling-Daba mountains. Our results show that the primarily land use changes were a decrease in the cultivated land area and an increase in the construction land area, as well as other conversions between six land use types from 2000 to 2015. The land use changes led to significant changes in the surface albedo. Meanwhile, the radiative forcing caused by the land use had different magnitudes, strengths, and occurrence ranges, resulting in both warming and cooling climate change effects.


2020 ◽  
pp. 161-165
Author(s):  
Bertram de Crom ◽  
Jasper Scholten ◽  
Janjoris van Diepen

To get more insight in the environmental performance of the Suiker Unie beet sugar, Blonk Consultants performed a comparative Life Cycle Assessment (LCA) study on beet sugar, cane sugar and glucose syrup. The system boundaries of the sugar life cycle are set from cradle to regional storage at the Dutch market. For this study 8 different scenarios were evaluated. The first scenario is the actual sugar production at Suiker Unie. Scenario 2 until 7 are different cane sugar scenarios (different countries of origin, surplus electricity production and pre-harvest burning of leaves are considered). Scenario 8 concerns the glucose syrup scenario. An important factor in the environmental impact of 1kg of sugar is the sugar yield per ha. Total sugar yield per ha differs from 9t/ha sugar for sugarcane to 15t/ha sugar for sugar beet (in 2017). Main conclusion is that the production of beet sugar at Suiker Unie has in general a lower impact on climate change, fine particulate matter, land use and water consumption, compared to cane sugar production (in Brazil and India) and glucose syrup. The impact of cane sugar production on climate change and water consumption is highly dependent on the country of origin, especially when land use change is taken into account. The environmental impact of sugar production is highly dependent on the co-production of bioenergy, both for beet and cane sugar.


Land ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 627
Author(s):  
Duong H. Nong ◽  
An T. Ngo ◽  
Hoa P. T. Nguyen ◽  
Thuy T. Nguyen ◽  
Lan T. Nguyen ◽  
...  

We analyzed the agricultural land-use changes in the coastal areas of Tien Hai district, Thai Binh province, in 2005, 2010, 2015, and 2020, using Landsat 5 and Landsat 8 data. We used the object-oriented classification method with the maximum likelihood algorithm to classify six types of land uses. The series of land-use maps we produced had an overall accuracy of more than 80%. We then conducted a spatial analysis of the 5-year land-use change using ArcGIS software. In addition, we surveyed 150 farm households using a structured questionnaire regarding the impacts of climate change on agricultural productivity and land uses, as well as farmers’ adaptation and responses. The results showed that from 2005 to 2020, cropland decreased, while aquaculture land and forest land increased. We observed that the most remarkable decreases were in the area of rice (485.58 ha), the area of perennial crops (109.7 ha), and the area of non-agricultural land (747.35 ha). The area of land used for aquaculture and forest increased by 566.88 ha and 772.60 ha, respectively. We found that the manifestations of climate change, such as extreme weather events, saltwater intrusion, drought, and floods, have had a profound impact on agricultural production and land uses in the district, especially for annual crops and aquaculture. The results provide useful information for state authorities to design land-management strategies and solutions that are economic and effective in adapting to climate change.


2021 ◽  
Author(s):  
Qing He ◽  
Kwok Pan Chun ◽  
Omer Yetemen ◽  
Bastien Dieppois ◽  
Liang Chen ◽  
...  

<p>Disentangling the effects of climate and land use changes on regional hydrological conditions is critical for local water and food security. The water variability over climate transition regions at the midlatitudes is sensitive to changes in regional climate and land use. Gansu, located in northwest China, is a midlatitude climate transition region with sharp climate and vegetation gradients. In this study, the effects of climate and land‑use changes on water balances are investigated over Gansu between 1981 and 2015 using a Budyko framework. Results show that there is reduced runoff generation potential over Gansu during 1981 and 2015, especially in the southern part of the region. Based on statistical scaling relationships, local runoff generation potential over Gansu are related to the El Nino-Southern Oscillation (ENSO). Intensified El Nino conditions weaken the Asian monsoons, leading to precipitation deficits over Gansu. Moreover, the regional evapotranspiration (ET) is increasing due to the warming temperature. The decreasing precipitation and increasing ET cause the decline of runoff generation potential over Gansu. Using the dynamical downscaling model outputs, the Budyko analysis indicates that increasing coverage of forests and croplands may lead to higher ET and may reduce runoff generation potential over Gansu. Moreover, the contributions of climate variability and land‑use changes vary spatially. In the southwest part of Gansu, the impacts of climate variability on water variations are larger (around 80%) than that of land‑use changes (around 20%), while land use changes are the dominant drivers of water variability in the southeast part of the region. The decline of runoff generation potential reveals a potential risk for local water and food security over Gansu. The water‑resource assessment approach developed in this study is applicable for collaborative planning at other climate transition regions at the midlatitudes with complex climate and land types for the Belt and Road Initiative.</p>


2016 ◽  
Vol 20 (10) ◽  
pp. 4129-4142 ◽  
Author(s):  
Emma Daniels ◽  
Geert Lenderink ◽  
Ronald Hutjes ◽  
Albert Holtslag

Abstract. The effects of historic and future land use on precipitation in the Netherlands are investigated on 18 summer days with similar meteorological conditions. The days are selected with a circulation type classification and a clustering procedure to obtain a homogenous set of days that is expected to favor land impacts. Changes in precipitation are investigated in relation to the present-day climate and land use, and from the perspective of future climate and land use. To that end, the weather research and forecasting (WRF) model is used with land use maps for 1900, 2000, and 2040. In addition, a temperature perturbation of +1 °C assuming constant relative humidity is imposed as a surrogate climate change scenario. Decreases in precipitation of, respectively, 3–5 and 2–5 % are simulated following conversion of historic to present, and present to future, land use. The temperature perturbation under present land use conditions increases precipitation amounts by on average 7–8 % and amplifies precipitation intensity. However, when also considering future land use, the increase is reduced to 2–6 % on average, and no intensification of extreme precipitation is simulated. In all, the simulated effects of land use changes on precipitation in summer are smaller than the effects of climate change, but are not negligible.


Land ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1240
Author(s):  
Ming-Yun Chu ◽  
Wan-Yu Liu

As compared with conventional approaches for reducing carbon emissions, the strategies of reducing emissions from deforestations and forest degradation (REDD) can greatly reduce costs. Hence, the United Nations Framework Convention on Climate Change regards the REDD strategies as a crucial approach to mitigate climate change. To respond to climate change, Taiwan passed the Greenhouse Gas Reduction and Management Act to control the emissions of greenhouse gases. In 2021, the Taiwan government has announced that it will achieve the carbon neutrality target by 2050. Accordingly, starting with focusing on the carbon sink, the REDD strategies have been considered a recognized and feasible strategy in Taiwan. This study analyzed the net present value and carbon storage for various land-use types to estimate the carbon stock and opportunity cost of land-use changes. When the change of agricultural land to artificial forests generated carbon stock, the opportunity cost of carbon stock was negative. Contrarily, restoring artificial forests (which refer to a kind of forest that is formed through artificial planting, cultivation, and conservation) to agricultural land would generate carbon emissions, but create additional income. Since the opportunity cost of carbon storage needs to be lower than the carbon market price so that landlords have incentives to conduct REDD+, the outcomes of this study can provide a reference for the government to set an appropriate subsidy or price for carbon sinks. It is suggested that the government should offer sufficient incentives to reforest collapsed land, and implement interventions, promote carbon trading policies, or regulate the development of agricultural land so as to maintain artificial broadleaf forests for increased carbon storage.


Author(s):  
E. Ramadan ◽  
T. Al-Awadhi ◽  
Y. Charabi

The study of land cover/land use dynamics under climate change conditions is of great significance for improving sustainable ecological management. Understanding the relationships between land cover and land use changes and climate change is thus very important. Understanding the interactive and cumulative effects of climate and land-use changes are a priority for urban planners and policy makers. The present investigation is based on Landsat satellite imagery to explore changes in vegetation spatial distribution between the years from 2000 to2018 The methodology is focused on vegetation indexes tracking and algebraic overlay calculation to analyzed vegetation and their spatial differentiation, land cover change pattern, and the relationships between vegetation dynamics and land cover change in Dhofar Governorate. The study results have revealed that the vegetation vigor is lower in all years compared to 2000. The scene of 2010 shows the minimum vegetation vigor, overall. Besides, the investigation shows a statistical relationship between rainfall and the status of the health of vegetation. Monsoon rainfall has an impact of the growth of vegetation. Between 2012 and 2013, the vegetation activity shows a decreasing trend. The analysis diagnoses an area affected by the worst degree of aridity situated in the southeastern of Dhofar Mountains. Climate change is the main driving factor resulted from both human activities and rainfall fluctuation.


2021 ◽  
Author(s):  
Jorge Sebastian Moraga ◽  
Nadav Peleg ◽  
Simone Fatichi ◽  
Peter Molnar ◽  
Paolo Burlando

<p>Hydrological processes in mountainous catchments will be subject to climate change on all scales, and their response is expected to vary considerably in space. Typical hydrological studies, which use coarse climate data inputs obtained from General Circulation Models (GCM) and Regional Climate Models (RCM), focus mostly on statistics at the outlet of the catchments, overlooking the effects within the catchments. Furthermore, the role of uncertainty, especially originated from natural climate variability, is rarely analyzed. In this work, we quantified the impacts of climate change on hydrological components and determined the sources of uncertainties in the projections for two mostly natural Swiss alpine catchments: Kleine Emme and Thur. Using a two-dimensional weather generator, AWE-GEN-2d, and based on nine different GCM-RCM model chains, we generated high-resolution (2 km, 1 hour) ensembles of gridded climate inputs until the end of the 21<sup>st</sup> century. The simulated variables were subsequently used as inputs into the fully distributed hydrological model Topkapi-ETH to estimate the changes in hydrological statistics at 100-m and hourly resolutions. Increased temperatures (by 4°C, on average) and changes in precipitation (decrease over high elevations by up to 10%, and increase at the lower elevation by up to 15%) results in increased evapotranspiration rates in the order of 10%, up to a 50% snowmelt, and drier soil conditions. These changes translate into important shifts in streamflow seasonality at the outlet of the catchments, with a significant increase during the winter months (up to 40%) and a reduction during the summer (up to 30%). Analysis at the sub-catchment scale reveals elevation-dependent hydrological responses: mean annual streamflow, as well as high and low flow extremes, are projected to decrease in the uppermost sub-catchments and increase in the lower ones. Furthermore, we computed the uncertainty of the estimations and compared them to the magnitude of the change signal. Although the signal-to-noise-ratio of extreme streamflow for most sub-catchments is low (below 0.5) there is a clear elevation dependency. In every case, internal climate variability (as opposed to climate model uncertainty) explains most of the uncertainty, averaging 85% for maximum and minimum flows, and 60% for mean flows. The results highlight the importance of modelling the distributed impacts of climate change on mountainous catchments, and of taking into account the role of internal climate variability in hydrological projections.</p>


2021 ◽  
Author(s):  
Lin Li ◽  
Hu Liu ◽  
Yang Yu ◽  
Wenzhi Zhao

<p><strong>Abstract: </strong>Wetlands remaining in the arid inland river landscapes of northwestern China suffer degradation and their resilience and ability to continue functioning under hydrologic and land use changes resulting from climate change may be significantly inhibited. Information on the desert-oasis wetlands, however, is sparse and knowledge of how ecological functioning and resilience may change under climate change and water-resource management is still lacking. Research in oasis wetland areas of the Northwestern China identified linkages between subsurface flow, plant transpiration, and water levels. In this study, we present an ecohydrological analysis of the energy and water balance in the wetland ecosystem. A process-based stochastic soil moisture model developed for groundwater-dependent ecosystems was employed to modelling the interactions between rainfall, water table fluctuations, soil moisture dynamics, and vegetation, and to investigate the ecohydrology of arid inland wetlands system. Field measured groundwater levels, vertical soil moisture profiles, soil water potentials, and root biomass allocation and transpiration of pioneer species in the wetlands were used to calibrate and validate the stochastic model. The parameterized model was then running to simulate the probability distributions of soil moisture and root water uptake, and quantitative descript the vegetation–water table–soil moisture interplay in the hypothesized scenarios of future. Our analysis suggested the increasing rates of water extraction and regulation of hydrologic processes, coupled with destruction of natural vegetation, and climate change, are jeopardizing the future persistence of wetlands and the ecological and socio-economic functions they support. To understand how climate change will impact on the ecohydrological functioning of wetlands, both hydrological and land use changes need to be considered in future works.</p><p><strong>Keywords: </strong>Wetland ecosystem, groundwater, soil moisture dynamics, water balances, Heihe River Basin</p>


Author(s):  
Nkemdilim Maureen Ekpeni ◽  
Amidu Owolabi Ayeni

This chapter examines both concept of global hazard and disaster and its management in the lights of its vulnerability. It categorized the different types of hazards and disasters and their components. From the research findings, it is observed that hazards and disaster are two sides of a coin. They occur at the interface between human systems and natural events in our physical environments. This chapter highlights that the major environmental changes driving hazards and vulnerability to disasters are climate change, land-use changes, and degradation of natural resources. After presenting a typology of disasters and their magnitude globally, management of disaster has transited from just being a “response and relief”-centric approach to a mitigation and preparedness approach.


Sign in / Sign up

Export Citation Format

Share Document