scholarly journals Combined Vector and Direct Controls Based on Five-Level Inverter for High Performance of IM Drive

2022 ◽  
Vol 13 (1) ◽  
pp. 17
Author(s):  
Oumaymah Elamri ◽  
Abdellah Oukassi ◽  
Lhoussain El Bahir ◽  
Zakariae El Idrissi

The goal of this study was to figure out how to regulate an induction motor in a hybrid electric vehicle. Conventional combined vector and direct control induction motors take advantage of the advantages of vector control and direct torque control. It is also a method that avoids some of the difficulties in implementing both of the two control methods. However, for this method of control, the statoric current has a great wealth of harmonic components which, unfortunately, results in a strong undulation of the torque regardless of the region speed. To solve this problem, a five-level neutral point clamped inverter was used. Through multilevel inverter operation, the voltage is closer to the sine wave. The speed and torque are then successfully controlled with a lower level of ripple in the torque response which improves system performance. The analysis of this study was verified with simulation in the MATLAB/Simulink interface. The simulation results demonstrate the high performance of this control strategy.

2011 ◽  
Vol 8 (2) ◽  
pp. 127-146 ◽  
Author(s):  
Brahim Gasbaoui ◽  
Abdelkader Chaker ◽  
Abdellah Laoufi ◽  
Boumediène Allaoua ◽  
Abdelfatah Nasri

Nowadays the electric vehicle motorization control takes a great interest of industrials for commercialized electric vehicles. This paper is one example of the proposed control methods that ensure both safety and stability the electric vehicle by the means of Direct Torque Control (DTC). For motion of the vehicle the electric drive consists of four wheels: two front ones for steering and two rear ones for propulsion equipped with two induction motors, due to their lightweight simplicity and high performance. Acceleration and steering are ensured by the electronic differential, permitting safe and reliable steering at any curve. The direct torque control ensures efficiently controlled vehicle. Electric vehicle direct torque control is simulated in MATLAB SIMULINK environment. Electric vehicle (EV) demonstrated satisfactory results in all type of roads constraints: straight, ramp, downhill and bends.


Author(s):  
Saber Krim ◽  
Mohamed Faouzi Mimouni

The conventional direct torque control (DTC) of induction motors has become the most used control strategy. This control method is known by its simplicity, fast torque response, and its lack of dependence on machine parameters. Despite the cited advantages, the conventional DTC suffers from several limitations, like the torque ripples. This chapter aims to improve the conventional DTC performances by keeping its advantages. These ripples depend on the hysteresis bandwidth of the torque and the sampling frequency. The conventional DTC limitations can be prevented by increasing the sampling frequency. Nevertheless, the operation with higher sampling frequency is not possible with the software solutions, like the digital signal processor (DSP), due to the serial processing of the implemented algorithm. To overcome the DSP limitations, the field programmable gate array (FPGA) can be chosen as an alternative solution to implement the DTC algorithm with shorter execution time. In this chapter, the FPGA is chosen thanks to its parallel processing.


2019 ◽  
Vol 9 (24) ◽  
pp. 5547
Author(s):  
Hani Albalawi ◽  
Sherif A. Zaid ◽  
Yonis M. Buswig

The simplicity and excellent dynamic performance of Direct Torque Control (DTC) make Induction Motor (IM) drives attractive for many applications that require precise torque control. The traditional version of DTC uses hysteresis controllers. Unfortunately, the nature of these controllers prevents the optimization of the inverter voltage vectors inside the flux hysteresis band. The inverter voltage vector optimization can produce fast torque response of the IM drive. This research proposes two torque optimization methods for IM systems utilizing DTC. Analysis and Matlab simulations for the proposed optimization methods prove that the torque and, consequently, the speed responses, are greatly improved. The performances of the drive system controlled by the proposed optimization methods and the traditional DTC are compared. Conversely, the effects of the parameters on the proposed optimization methods are introduced. The proposed methods greatly improve the torque and speed dynamic performances against the traditional DTC technique. However, one of the proposed optimization methods is more sensitive to IM parameter variations than the other.


Author(s):  
Hrushikesh V. Bihade

Abstract: Traditional DTC popular because of its simplicity, Robustness, and first torque response. However, it is associated by high THD, large torque ripples and variable switching frequency. Which leads the way to scope of research in traditional DTC drive. thus, to further raise the performance, a method based on minimum voltage vector error is proposed in this dissertation. To cut down the error value between voltage vector imposed on the machine terminal and reference voltage vector, the value of Duty ratio is effectively optimized by propose method. The Optimization process does not increase the complexity of method. The proposed method is simulated in MATLAB environment. Keywords: TDTC, MVE DTC, Torque ripples, voltage-vector, current THD


Author(s):  
Sadegh Vaez-Zadeh

In this chapter, three control methods recently developed for or applied to electric motors in general and to permanent magnet synchronous (PMS) motors, in particular, are presented. The methods include model predictive control (MPC), deadbeat control (DBC), and combined vector and direct torque control (CC). The fundamental principles of the methods are explained, the machine models appropriate to the methods are derived, and the control systems are explained. The PMS motor performances under the control systems are also investigated. It is elaborated that MPC is capable of controlling the motor under an optimal performance according to a defined objective function. DBC, on the other hand, provides a very fast response in a single operating cycle. Finally, combined control produces motor dynamics faster than one under VC, with a smoother performance than the one under DTC.


Sign in / Sign up

Export Citation Format

Share Document