Prospects for the use of fibrin scaffolds populated with pulp and periodontal stem cells: an experimental study

2021 ◽  
Vol 26 (2) ◽  
pp. 96-103
Author(s):  
Yu. A. Dombrovskaya ◽  
N. I. Enukashvili ◽  
R. E. Banashkov ◽  
N. Yu. Semenova ◽  
I. A. Karabak ◽  
...  

Relevance. Creating three-dimensional scaffolds from biodegradable materials and seeding them with stem cells derived from the oral tissues is a promising tool for guided tissue regeneration. Pulp and periodontal stem cells have a high potential for osteogenic differentiation, which biologically determines their use in surgical bone reconstruction. The experiment shows the result of using fibrin glue seeded with pulp and periodontal stem cells on the mandible of laboratory mice. The article presents the results of computed tomography and histological examination. The data provide evidence of the influence of seeded scaffolds on bone remodeling in the area of the defect.Materials and methods. The Local Ethics Committee of the North-Western State Medical University named after I.I. Mechnikov gave permission for the practical part of the research work. The study included 29 white laboratory mice. Molars were extracted and a bone defect was formed. Pulp and periodontal stem cells were obtained and cell-seeded scaffolds were made, then they were introduced into the defect area. The animals were euthanized, maxillofacial CT scan and histology of the defect area were performed 28 days after the molar extraction.Results. The oral cavity of mice was examined, molars were extracted, and teeth were morphologically examined under anesthesia. Scaffolds were synthesized and bone defects were filled. CT scans and histology results were analyzed. The bone volume increased in the main group compared to the control group.Conclusion. The fibrin glue can be used to obtain a material with mechanical characteristics sufficient for a stable shape scaffold. The study proved that the pulp stem cells enclosed in a fibrin glue-based scaffold can maintain the ability to proliferate and osteogenically differentiate. The scaffold based on fibrin glue, which we used, affected the bone remodeling process in the area of jaw defects. 

2021 ◽  
Vol 54 (2) ◽  
pp. 68
Author(s):  
Michael Josef Kridanto Kamadjaja

Background: Bone regeneration studies involving the use of chitosan–hydroxyapatite (Ch-HA) scaffold seeded with human amnion mesenchymal stem cells (hAMSCs) have largely incorporated tissue engineering experiments. However, at the time of writing, the results of such investigations remain unclear. Purpose: The aim of this study was to determine the osteogenic differentiation of the scaffold Ch-HA that is seeded with hAMSCs in the regeneration of calvaria bone defect. Methods: Ch-HA scaffold of 5 mm diameter and 2 mm height was created by lyophilisation and desalination method. hAMSCs were cultured in hypoxia environment (5% oxygen, 10% carbon dioxide, 15% nitrogen) and seeded on the scaffold. Twenty male Wistar rat subjects (8 – 10 weeks, 200 - 250 grams) were randomly divided into two groups: control and hydroxyapatite scaffold (HAS). Defects (similar size to scaffold size) were created in the calvaria bone of the all-group subjects, but a scaffold was subsequently implanted only in the treatment group members. Control group left without treatment. After observation lasting 1 and 8 weeks, the subjects were examined histologically and immunohistochemically. Statistical analysis was done using ANOVA test. Results: Angiogenesis; expression of vascular endothelial growth factor; bone morphogenetic protein; RunX-2; alkaline phosphatase; type-1 collagen; osteocalcin and the area of new trabecular bone were all significantly greater in the HAS group compared to the control group. Conclusion: The three-dimensional Ch-HA scaffold seeded with hypoxic hAMSCs induced bone remodeling in calvaria defect according to the expression of the osteogenic and angiogenic marker.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Chunjie Xu ◽  
Jing Zhao ◽  
Qiuyue Li ◽  
Lin Hou ◽  
Yan Wang ◽  
...  

Abstract Background Silicosis is an occupational respiratory disease caused by long-term excessive silica inhalation, which is most commonly encountered in industrial settings. Unfortunately, there is no effective therapy to delay and cure the progress of silicosis. In the recent years, stem cell therapy has emerged as an attractive tool against pulmonary fibrosis (PF) owing to its unique biological characteristics. However, the direct use of stem cells remains limitation by many risk factors for therapeutic purposes. The exclusive utility of exosomes secreted from stem cells, rather than cells, has been considered a promising alternative to overcome the limitations of cell-based therapy while maintaining its advantages. Methods and results In this study, we first employed a three-dimensional (3D) dynamic system to culture human umbilical cord mesenchymal stem cell (hucMSC) spheroids in a microcarrier suspension to yield exosomes from serum-free media. Experimental silicosis was induced in C57BL/6J mice by intratracheal instillation of a silica suspension, with/without exosomes derived from hucMSC (hucMSC-Exos), injection via the tail vein afterwards. The results showed that the gene expression of collagen I (COL1A1) and fibronectin (FN) was upregulated in the silica group as compared to that in the control group; however, this change decreased with hucMSC-Exo treatment. The value of FEV0.1 decreased in the silica group as compared to that in the control group, and this change diminished with hucMSC-Exo treatment. These findings suggested that hucMSC-Exos could inhibit silica-induced PF and regulate pulmonary function. We also performed in vitro experiments to confirm these findings; the results revealed that hucMSC-Exos decreased collagen deposition in NIH-3T3 cells exposed to silica. Conclusions Taken together, these studies support a potential role for hucMSC-Exos in ameliorating pulmonary fibrosis and provide new evidence for improving clinical treatment induced by silica.


2012 ◽  
Vol 1417 ◽  
Author(s):  
Igor V. Shishkovsky ◽  
Stanislav E. Volchkov ◽  
Olga V. Tumina

ABSTRACTMultipotential mesenchymal stromal stem cells (MMSSC) are an excellent model for testing of the toxicity and biocompatibility of natural-tissue-engineering scaffolds (extracellular matrix). Such studies allow prediction of the behavior of implanted materials in the human. In the present work, testing of a three-dimensional prototype of a smart material – nitinol (the intermetallic phase NiTi) – to evaluate chemotaxis and biocompatibility was conducted.Porous samples were synthesized by the selective laser sintering (SLS) method, establishing different surface conditions in the samples. The surface microstructure and roughness were observed by scanning electron microscopy (SEM) and optical microscopy. The results revealed the clear influence of the surface roughness on stem cell proliferation, morphology, and adhesion. The NiTi samples were well tolerated by the cells but the number of focal contacts decreased with increasing porosity. The proliferation speed was 0.694 doubling/day in the control group and 0.532 doubling/day for the NiTi group. Whereas the control group showed immature and actively divided stem cells, cell growth to enormous sizes (i.e., rapid aging) and a fall in fission activity in the proximity of an external irritant (viz., the NiTi scaffold) was observed.


2015 ◽  
Vol 2015 ◽  
pp. 1-12 ◽  
Author(s):  
Radwa A. Mehanna ◽  
Iman Nabil ◽  
Noha Attia ◽  
Amany A. Bary ◽  
Khalid A. Razek ◽  
...  

Bone marrow-derived mesenchymal stem cells (BM-MSCs) represent a modern approach for management of chronic skin injuries. In this work, we describe BM-MSCs application versus their conditioned media (CM) when delivered topically admixed with fibrin glue to enhance the healing of chronic excisional wounds in rats. Fifty-two adult male rats were classified into four groups after induction of large-sized full-thickness skin wound: control group (CG), fibrin only group (FG), fibrin + MSCs group (FG + SCs), and fibrin + CM group (FG + CM). Healing wounds were evaluated functionally and microscopically. Eight days after injury, number of CD68+ macrophages infiltrating granulation tissue was considerably higher in the latter two groups. Although—later—none of the groups depicted a substantially different healing rate, the quality of regenerated skin was significantly boosted by the application of either BM-MSCs or their CM both (1) structurally as demonstrated by the obviously increased mean area percent of collagen fibers in Masson’s trichrome-stained skin biopsies and (2) functionally as supported by the interestingly improved epidermal barrier as well as dermal tensile strength. Thus, we conclude that topically applied BM-MSCs and their CM—via fibrin vehicle—could effectively improve the quality of healed skin in chronic excisional wounds in rats, albeit without true acceleration of wound closure.


2018 ◽  
pp. 34-42
Author(s):  
Juan Manuel Monteoliva ◽  
Ayelén Villalba ◽  
Andrea Pattini

Advances in research work in the field of numerical analysis of daylight performance have generated in-depth knowledge on photometric measurements of daylight quality. Most dynamic metrics are based on illuminance, which is a two-dimensional concept insofar as it is concerned with the density of luminous flux incident at a point on a surface. In order to extend dynamic metrics into the third dimension and consider the distribution of illumination at a point in space, it is important to generate new advances in simulation environments and consider spatial illumination metrics. In this context, the main objective of the present work was to advance in the development of cubic dynamic daylight metrics, as a complement to the two dimensional analysis currently employed, promoting the use of Climate Based Daylight Modelling (CBDM). For this purpose, cylindrical to horizontal illuminance ratio is applied to dynamic simulation paradigm developing the concept of useful modeling indexs (UMIs). The research methodology applied in this work is divided into two main parts: (i) two dimensional concept: spatial daylight autonomy (sDA(300lx,50%) -horizontal-, sDA(175lx,50%) -vertical-) and uniformity, and (ii) three dimensional concept: useful cylindrical to horizontal illuminance ratio (uEcl/Eh(0.3-0.6)). In order to assess this method, two spaces (RR1 and RR2) of the Lavalle Public Library, located in Mendoza-Argentina, were taken as a case study. Results show important differences in horizontal illuminance between RR1 and RR2 (∆sDA(300lx, 50%) > 80%). Similar values of uEcl/Ewp(0.3-0.6) -useful cylindrical to horizontal illuminance ratio- are detected in both rooms (RR1= 69.32 % and RR2= 72.24 %) in nodes near north opening. Yet there are significant differences (< 36%) of uEcl/Ewp(0.3-0.6) between nodes located near the south wall, this is due to the obstruction of a south opening in RR2. Furthermore, it is important to mention that 2D metrics display a more uniform behavior than 3D metrics. This shows itself clearly if we take into account that difference in sDA are much lower than difference in uEcl/Eh(0.3-0.6), if we compare nodes closest to the north windows to does that are far from it, in both rooms (RR1 and RR2). This results from the fact that cubic metrics are more sensitive to the direction of light. This is of crucial importance for daylight studies in clear sky condition, due to the defined direction of direct solar radiation. Finally, a new approach to daylighting performance analysis based on the addition of cubic metrics to dynamic daylight paradigm is proposed: useful modelling indexs (UMIs). UMIs make it possible to quantify annual occurrence of proper light modelling conditions. As an initial approach, cylindrical to horizontal illuminance ratio (Ecl/Ewp(0.3-0.6)) has been considered, due to its current use in international standards.


Polymers ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 538 ◽  
Author(s):  
Eui Hwa Jang ◽  
Jung-Hwan Kim ◽  
Jun Hee Lee ◽  
Dae-Hyun Kim ◽  
Young-Nam Youn

Artificial vessels capable of long-term patency are essential clinical tools in vascular surgery that involves small vessels. On-going attempts to develop artificial vessels that complements restenosis have not been entirely successful. Here, we report on the fabrication of small-sized artificial vessels using a three-dimensional bio-printer. The fabrication employed biodegradable polycaprolactone and autologous MSCs harvested from the bone-marrow of canines. The MSCs were cultured and differentiated into endothelial-like cells. After confirming differentiation, artificial vessels comprising three-layers were constructed and implanted into the arteries of canines. The autologous MSCs printed on artificial vessels (cell-derived group) maintained a 64.3% patency (9 of 14 grafts) compared with artificial vessels without cells (control group, 54.5% patency (6 of 11 grafts)). The cell-derived vessels (61.9 cells/mm2 ± 14.3) had more endothelial cells on their inner surfaces than the control vessels (21 cells/mm2 ± 11.3). Moreover, the control vessels showed acute inflammation on the porous structures of the implanted artificial vessels, whereas the cell-derived vessels exhibited fibrinous clots with little to no inflammation. We concluded that the minimal rejection of these artificial vessels by the immune system was due to the use of autologous MSCs. We anticipate that this study will be of value in the field of tissue-engineering in clinical practice.


2011 ◽  
Vol 109 (suppl_1) ◽  
Author(s):  
Cristina Sanina ◽  
Claudia O Rodrigues ◽  
Ivonne H Schulman ◽  
Irene Margitich ◽  
Wayne Balkan ◽  
...  

Mesenchymal stem cells (MSCs) have begun to manifest themselves as a safe and beneficial therapy for restoring cardiac function in failing hearts. However, the mechanism underlying this function is unclear. The present study was initiated to investigate the role of Connexin 43 (Cx43) in hMSC integration, migration and differentiation in co-culture with neonatal rat cardiomyocyte (NRVMs) in vitro. Cx43 is a gap junction connexin which is required for proper heart development and heart electrophysiology. We generated lentiviral constructs for Cx43 knockdown and Cx43 overexpression and used them to alter the level of Cx43 in hMSCs. The effectiveness of these vectors was confirmed by assessing Cx43 levels in hMSCs by Western Blot analysis and by Real Time-PCR. These hMSCs were co-cultured with NRVMs for up to 1 month on poly-lysine and collagen I coated glass cover slips. Co-cultures containing MSCs overexpressing Cx43 exhibited coordinated beating and three-dimensional tube formation in 10 days, whereas 14 days were required for control cells. The hMSCs were integrated into these beating three dimensional tubes. No tubes were observed in co-cultures with Cx43 knockdown hMSCs, rather we observed the formation of small, unconnected beating spheres after 30 days in co-culture. Human MSC-Cx43 knockdown cells were integrated into these spheres and immunofluorescence staining demonstrated that Cx43 expression in hMSC-Cx43 knockdown remained reduced when compared to the control group. Real Time-PCR analysis using human specific primers showed significant upregulation of KDR, smooth muscle actin, Pecam1, CD34, CDH2, and CaCNA1C. Several genes, not initially seen in hMSCs, including Gata4, CDH5, SCN5A, SLC8A1, and KCNQ1, appeared in co-cultures with hMSCs with normal and elevated expression levels of Cx43. However, in co-culture of cardiomyocytes with Cx43 knockdown MSCs we observed downregulation of KDR, CHD2, SCN5A, SLC8A1, KCNQ1 compare to control. These results suggest a strong correlation between the presence of Cx43 and the ability of hMSCs to differentiate into cardiac and endothelial lineages.


2021 ◽  
Vol 22 (17) ◽  
pp. 9478
Author(s):  
Jinzhao Lyu ◽  
Yoshiya Hashimoto ◽  
Yoshitomo Honda ◽  
Naoyuki Matsumoto

Scaffolds stimulate cell proliferation and differentiation and play major roles in providing growth and nutrition factors in the repair of bone defects. We used the recombinant peptide Cellnest™ to prepare the three-dimensional stem cell complex, CellSaic, and evaluated whether CellSaic containing rat dental pulp stem cells (rDPSCs) was better than that containing rat bone marrow stem cells (rBMSCs). rDPSC-CellSaic or rBMSC-CellSaic, cultured with or without osteogenic induction medium, formed the experimental and control groups, respectively. Osteoblast differentiation was evaluated in vitro and transplanted into a rat model with a congenital jaw fracture. Specimens were collected and evaluated by microradiology and histological analysis. In the experimental group, the amount of calcium deposits, expression levels of bone-related genes (RUNX2, ALP, BSP, and COL1), and volume of mineralized tissue, were significantly higher than those in the control group (p < 0.05). Both differentiated and undifferentiated rDPSC-CellSaic and only the differentiated rBMSC-CellSaic could induce the formation of new bone tissue. Overall, rBMSC-CellSaic and rDPSC-CellSaic made with Cellnest™ as a scaffold, provide excellent support for promoting bone regeneration in rat mandibular congenital defects. Additionally, rDPSC-CellSaic seems a better source for craniofacial bone defect repair than rBMSC-CellSaic, suggesting the possibility of using DPSCs in bone tissue regenerative therapy.


2019 ◽  
Vol 10 (1) ◽  
pp. 88-96
Author(s):  
Ghazal Keshavarz ◽  
Cyrus Jalili ◽  
Mona Pazhouhi ◽  
Mozafar Khazaei

Purpose: Adipose stem cells (ASCs) are pluripotent cells with the ability of self-renewal and differentiation into different types of mesenchymal cells. As cartilage repair is difficult due to lack of blood capillary, resveratrol (Res) is a polyphenolic compound with diverse biological properties to be possibly used in this case. The aim of the present study was to investigate the effect of Res on differentiation of ASCs into chondrocyte in a three-dimensional (3D) culture model. Methods: Subcutaneous adipose tissues were prepared and digested enzymatically, and passed through cell strainer. ASCs were harvested in the fourth passage, and divided into five groups. The control group received chondrogenic differentiation medium (CDM) while the experimental groups received CDM plus different doses of Res (1, 10, 20, and 50 µM) for 21 days. Expression of cartilage specific genes and Sirtuin1 (SIRT 1), cell viability, apoptosis and ferric reducing antioxidant power (FRAP) were detected using reverse transcription polymerase chain reaction (RT-PCR), MTT assay, TUNEL and acridine orange/ethidium bromide (AO/EB) staining. One-way ANOVA and non-parametric Mann-Whitney U test were used for data analyses. Results: ASCs were differentiated to chondrocyte by CDM in a three-dimensional culture. 10 and 20 µM doses of Res showed the most proliferating effect on ADSCs. The SIRT 1 genes expression and FRAP level also increased significantly compared to the control group (P<0.05). Also, OD of cell increased whereas apoptosis decreased. Conclusion: 3D culture was a suitable condition for ASCs differentiation to chondrocyte, and lower doses of Res exert proliferation effect on ASCs.


Sign in / Sign up

Export Citation Format

Share Document