Directivity of sound propagation from an commercial supersonic engine inlet

2021 ◽  
Vol 263 (2) ◽  
pp. 4211-4218
Author(s):  
Mitchell Sugar ◽  
Paul Slaboch

The effects of mean flow variations on sound propagation from an axisymmetric commercial supersonic engine inlet were studied using numerical methods. A finite element model of the inlet was constructed in Ansys Fluent and used to solve for flow fields given by different initial conditions. Results from this model were fed into the aeroacoustic solver, Actran, and used to calculate far field radiated noise as well as the directivity of that noise. The acoustic source of this noise was a plane wave of a known strength placed at the fan face. In addition to assessing the effects of mean flow on the radiated noise transfer functions, the duct modes of the model were compared across different flow regimes. Relationships between mean flow parameters and the directivity of duct modes are developed. The results of this study will be used in further studies to gain a deeper understanding of how the underlying physics which govern the system create favorable or unfavorable directivity patterns.

2015 ◽  
Vol 783 ◽  
pp. 379-411 ◽  
Author(s):  
I. Marusic ◽  
K. A. Chauhan ◽  
V. Kulandaivelu ◽  
N. Hutchins

In this paper we study the spatial evolution of zero-pressure-gradient (ZPG) turbulent boundary layers from their origin to a canonical high-Reynolds-number state. A prime motivation is to better understand under what conditions reliable scaling behaviour comparisons can be made between different experimental studies at matched local Reynolds numbers. This is achieved here through detailed streamwise velocity measurements using hot wires in the large University of Melbourne wind tunnel. By keeping the unit Reynolds number constant, the flow conditioning, contraction and trip can be considered unaltered for a given boundary layer’s development and hence its evolution can be studied in isolation from the influence of inflow conditions by moving to different streamwise locations. Careful attention was given to the experimental design in order to make comparisons between flows with three different trips while keeping all other parameters nominally constant, including keeping the measurement sensor size nominally fixed in viscous wall units. The three trips consist of a standard trip and two deliberately ‘over-tripped’ cases, where the initial boundary layers are over-stimulated with additional large-scale energy. Comparisons of the mean flow, normal Reynolds stress, spectra and higher-order turbulence statistics reveal that the effects of the trip are seen to be significant, with the remnants of the ‘over-tripped’ conditions persisting at least until streamwise stations corresponding to $Re_{x}=1.7\times 10^{7}$ and $x=O(2000)$ trip heights are reached (which is specific to the trips used here), at which position the non-canonical boundary layers exhibit a weak memory of their initial conditions at the largest scales $O(10{\it\delta})$, where ${\it\delta}$ is the boundary layer thickness. At closer streamwise stations, no one-to-one correspondence is observed between the local Reynolds numbers ($Re_{{\it\tau}}$, $Re_{{\it\theta}}$ or $Re_{x}$ etc.), and these differences are likely to be the cause of disparities between previous studies where a given Reynolds number is matched but without account of the trip conditions and the actual evolution of the boundary layer. In previous literature such variations have commonly been referred to as low-Reynolds-number effects, while here we show that it is more likely that these differences are due to an evolution effect resulting from the initial conditions set up by the trip and/or the initial inflow conditions. Generally, the mean velocity profiles were found to approach a constant wake parameter ${\it\Pi}$ as the three boundary layers developed along the test section, and agreement of the mean flow parameters was found to coincide with the location where other statistics also converged, including higher-order moments up to tenth order. This result therefore implies that it may be sufficient to document the mean flow parameters alone in order to ascertain whether the ZPG flow, as described by the streamwise velocity statistics, has reached a canonical state, and a computational approach is outlined to do this. The computational scheme is shown to agree well with available experimental data.


Author(s):  
Terrin Stachiw ◽  
Fidel Khouli ◽  
Robert G. Langlois ◽  
Fred F. Afagh ◽  
Joseph Ricciardi

Abstract Airframe flexibility effects have typically been captured by modal reduction of the airframe. Although efficient, this model may still be prohibitively expensive for preliminary design studies. This paper employs time- and frequency-domain system identification techniques to form a multi-objective optimization problem to identify equivalent transfer functions representing airframe flexibility effects. Pareto-optimal sets are first identified for an equivalent transfer function of a force element between the landing gear attachment point and the centre of gravity of a 150-passenger regional jet, and a second transfer function from the input landing gear force to the cockpit acceleration. The reduced models demonstrate the ability to generally capture flexibility effects with reduced computation times. The combination of time-domain and frequency-domain information ensures the positive time-history matches while the model remains physically realizable as it is rooted to frequency response obtained from the finite element model. It is hypothesized that this physical link allowed the model to be robust to the landing initial conditions.


Author(s):  
Sterling McBride ◽  
Ricardo Burdisso ◽  
Corina Sandu

ABSTRACT Tire-pavement interaction noise (TPIN) is one of the main sources of exterior noise produced by vehicles traveling at greater than 50 kph. The dominant frequency content is typically within 500–1500 Hz. Structural tire vibrations are among the principal TPIN mechanisms. In this work, the structure of the tire is modeled and a new wave propagation solution to find its response is proposed. Multiple physical effects are accounted for in the formulation. In an effort to analyze the effects of curvature, a flat plate and a cylindrical shell model are presented. Orthotropic and nonuniform structural properties along the tire's transversal direction are included to account for differences between its sidewalls and belt. Finally, the effects of rotation and inflation pressure are also included in the formulation. Modeled frequency response functions are analyzed and validated. In addition, a new frequency-domain formulation is presented for the computation of input tread pattern contact forces. Finally, the rolling tire's normal surface velocity response is coupled with a boundary element model to demonstrate the radiated noise at the leading and trailing edge locations. These results are then compared with experimental data measured with an on-board sound intensity system.


Author(s):  
Anil Kumar ◽  
Virendra Kumar ◽  
PMV Subbarao ◽  
Surendra K Yadav ◽  
Gaurav Singhal

The two-stage ejector has been suggested to replace the single-stage ejector geometrical configuration better to utilize the discharge flow’s redundant momentum to induce secondary flow. In this study, the one-dimensional gas dynamic constant rate of momentum change theory has been utilized to model a two-stage ejector along with a single-stage ejector. The proposed theory has been utilized in the computation of geometry and flow parameters of both the ejectors. The commercial computational fluid dynamics tool ANSYS-Fluent 14.0 has been utilized to predict performance and visualize the flow. The performance in terms of entrainment ratio has been compared under on- design and off-design conditions. The result shows that the two-stage ejector configuration has improved (≈57%) entrainment capacity than the single-stage ejector under the on-design condition.


2007 ◽  
Vol 345-346 ◽  
pp. 845-848
Author(s):  
Joo Yong Cho ◽  
Han Suk Go ◽  
Usik Lee

In this paper, a fast Fourier transforms (FFT)-based spectral analysis method (SAM) is proposed for the dynamic analysis of spectral element models subjected to the non-zero initial conditions. To evaluate the proposed SAM, the spectral element model for the simply supported Bernoulli-Euler beam is considered as an example problem. The accuracy of the proposed SAM is evaluated by comparing the dynamic responses obtained by SAM with the exact analytical solutions.


Author(s):  
Ahmed Hossam El-Din ◽  
Aya Diab

The process of surface erosion due to particle collision has been the focus of a number of investigations with regards to gas turbine engines, aircraft, reentry missiles, pipelines carrying coal slurry, etc. Recently, increased interest in wind energy by countries in the Saharan regions of the Middle East and North Africa (MENA) brings about some concern about leading edge erosion of wind turbines operating under such dusty conditions. Leading edge erosion can have a detrimental impact on the extracted energy as it changes the blade surface roughness causing premature/unpredictable separation. Though erosion may not be easily avoided; it may be mitigated via using airfoil families characterized by low roughness sensitivity. In this paper, a model of an airfoil erosion subjected to sand blasting is developed using the discrete phase modeling capability in ANSYS-FLUENT along with the DNV erosion model. The effect of various flow parameters, such as angle of attack, and particle size, on the extent of erosion is investigated for a number of airfoil designs. The developed model is used as a predictive tool to assess the power deterioration of eroded wind blades.


1999 ◽  
Author(s):  
Michael Allen ◽  
Nickolas Vlahopoulos

Abstract In this paper an algorithm is developed for combining finite element analysis and boundary element techniques in order to compute the noise radiated from a panel subjected to boundary layer excitation. The excitation is presented in terms of the auto and cross power spectral densities of the fluctuating wall pressure. The structural finite element model for the panel is divided into a number of sub-panels. A uniform fluctuating pressure is applied as excitation on each sub-panel separately. The corresponding vibration is computed, and is utilized as excitation for an acoustic boundary element analysis. The acoustic response is computed at any data recovery point of interest. The relationships between the acoustic response and the pressure excitation applied at each particular sub-panel constitute a set of transfer functions. They are combined with the spectral densities of the excitation for computing the noise generated from the vibration of the panel subjected to the boundary layer excitation. The development presented in this paper has the potential of computing wind noise in automotive applications, or boundary layer noise in aircraft applications.


2000 ◽  
Author(s):  
Alex Povitsky

Abstract In this study we consider one method of parallelization of implicit numerical schemes on multiprocessor systems. Then, the parallel high-order compact numerical algorithm is applied to physics of amplification of sound waves in a non-uniform mean flow. Due to the pipelined nature of this algorithm, its efficient parallelization is based on scheduling of processors for other computational tasks while otherwise the processors stay idle. In turn, the proposed scheduling algorithm is taken as a special case of the general shop scheduling problem and possible extentions and generalizations of the proposed scheduling methodology are discussed. Numerical results are discussed in terms of baroclinic generation of wave-associated vorticity that appear to be a key process in energy transfer between a non-uniform mean flow and a propagating disturbance. The discovered phenomenon leads to significant amplification of sound waves and controls the direction of sound propagation.


2018 ◽  
Vol 2018 ◽  
pp. 1-16 ◽  
Author(s):  
Fabio Nardecchia ◽  
Annalisa Di Bernardino ◽  
Francesca Pagliaro ◽  
Paolo Monti ◽  
Giovanni Leuzzi ◽  
...  

Computational fluid dynamics (CFD) is currently used in the environmental field to simulate flow and dispersion of pollutants around buildings. However, the closure assumptions of the turbulence usually employed in CFD codes are not always physically based and adequate for all the flow regimes relating to practical applications. The starting point of this work is the performance assessment of the V2F (i.e., v2¯ − f) model implemented in Ansys Fluent for simulating the flow field in an idealized array of two-dimensional canyons. The V2F model has been used in the past to predict low-speed and wall-bounded flows, but it has never been used to simulate airflows in urban street canyons. The numerical results are validated against experimental data collected in the water channel and compared with other turbulence models incorporated in Ansys Fluent (i.e., variations of both k-ε and k-ω models and the Reynolds stress model). The results show that the V2F model provides the best prediction of the flow field for two flow regimes commonly found in urban canopies. The V2F model is also employed to quantify the air-exchange rate (ACH) for a series of two-dimensional building arrangements, such as step-up and step-down configurations, having different aspect ratios and relative heights of the buildings. The results show a clear dependence of the ACH on the latter two parameters and highlight the role played by the turbulence in the exchange of air mass, particularly important for the step-down configurations, when the ventilation associated with the mean flow is generally poor.


Sign in / Sign up

Export Citation Format

Share Document