Noise Control design for a Ventilation Fan - Case Study

2021 ◽  
Vol 263 (1) ◽  
pp. 5731-5739
Author(s):  
Jonathan Bonnett ◽  
Carmel Cuschieri ◽  
Joseph M. Cuschieri

A ventilation system was design and installed for a multi story garage. The ventilation system system had a vertical concrete shaft with the ventilation fan located on the top floor at street level. The ventilation fan is separated from the outside by a set of metal louvers. Adjacent to the louvers is an open pedestrian area. The exhaust fan as installed had an inline duct silencer but this was insufficient in terms of providing the desired noise mitigation. The project desire was not to make changes to the fan or its inline silencer or the external louvers so an alternative noise mitigation option had to be explored. Based on the provided sound power characteristics of the fan, the exterior noise levels as calculated matched the expected levels coming out of the metal louvers. The interior of the ventilation shaft is bare concrete with the fan installed though a hole in the concrete top floor. The predominate noise was the very high reverberation inside the ventilation shaft. The owner of the property made an attempt at installing noise absorption but this was not sufficient. Based on the field data the sound levels with the preliminary absorption solution matched expectation, but further noise reduction was required. A complete sound absorption on the walls of the concrete ventilation shaft noise mitigation solution was design, and the expected levels predicted to show that significant noise reductions can be obtained by a comprehensive noise absorption solution. The noise mitigation solution was implemented and exterior sound level measurements performed at the completion of the project. The measured sound levels outside of the metal louvers were in very good agreement with the predicted levels. Based on the success of this first noise mitigation solution, noise mitigation for a second ventilation system is not being considered.

Author(s):  
Mark P. Colino ◽  
Elena B. Rosenstein

The new train signaling, traction power and tunnel ventilation system coordination guidelines enacted in National Fire Protection Association (NFPA) Standard 130 have brought the necessity and cost of tunnel ventilation fan shafts into greater focus. The guidelines were aimed at coordinating the three aforementioned rail systems to control the number of trains that could be between successive ventilation shafts during an emergency — in recognition of the fact that the best protection to both incident and non-incident train passengers and crew is to allow no more than one train in each ventilation zone. Though based in safety, these new NFPA guidelines can substantially expand the capital cost and environmental impact of new rail tunnel projects by adding more ventilation shafts and tunnel fan equipment to the scope of work. In addition, the resulting increase in the required number of ventilation shafts and tunnel fan equipment can hinder existing railroad properties as they seek to either increase their train throughput rates, or reduce their tunnel electrical infrastructure. Fortunately, a new kind of emergency ventilation shaft has been developed to facilitate compliance with the NFPA 130 Standard without the excessive capital cost and far-reaching environmental impacts of a traditional emergency ventilation shaft. This new kind of emergency ventilation shaft is called the Crossflue. The Crossflue is a horizontal passage between parallel rail tunnels with a single ventilation fan-motor unit installation. The Crossflue fan is designed to transfer air/smoke flows from one (occupied, incident) tunnel to another (unoccupied, non-incident) tunnel — thereby protecting the incident tunnel at the expense of the non-incident tunnel. The Crossflue passage has angled construction to allow a smooth transition of airflows both into and out of the adjoining tunnels. In addition to the fan, the Crossflue contains a ventilation damper, sound attenuators, ductwork transitions and flexible connectors within the fan equipment line-up; the functionality of all this mechanical equipment is described in the paper. To preserve underground space and minimize the rock excavation, the Crossflue fan is both remotely-powered and remotely-controlled; the fan is only operated as part of a pre-programmed response to tunnel fire events. The methodology utilized to design the Crossflue was taken from the Subway Environmental Design Handbook (SEDH); the SEDH [1] was specifically developed for rail tunnel ventilation design and is the preeminent reference volume in the industry. In summary, the Crossflue provides a dual benefit of achieving NFPA 130 compliance, while at the same time minimizing the construction, equipment, environmental, and energy costs of a traditional tunnel ventilation shaft.


Author(s):  
Naeem Al-Oudat

<p><span>When using audio-amplifiers in the open, uneven distribution of sound makes people unpleasant because it is loud or unheared. This unfortunate situation arises because audio-amplifiers volumes are set according to the guess of sound technicians. Mosques, as an example, are distributed inside wide areas and fire Azan five times a day. Due to the relatively long distances between them, speed and direction of the wind impose setting sound levels prior to each Azan such that all the area is covered and the overlap is minimized. In this paper, we propose a system based on internet of things (IoT) model to control the sound level of each mosque in the community. An IoT device (one in a mosque) sets the level of sound fired by the audio-amplifier. To do that, a synchronized series of tones is fired from each node. Once a node hears these tones, the process of sound level control starts to indicate the distances to heared nodes. As the approximate distances between nodes are known, each node can calculate its suitable sound level. Results showed that the proposed system is effective in setting sound levels for mosques audio amplifiers.</span></p>


2021 ◽  
Vol 10 (14) ◽  
pp. 3078
Author(s):  
Sara Akbarzadeh ◽  
Sungmin Lee ◽  
Chin-Tuan Tan

In multi-speaker environments, cochlear implant (CI) users may attend to a target sound source in a different manner from normal hearing (NH) individuals during a conversation. This study attempted to investigate the effect of conversational sound levels on the mechanisms adopted by CI and NH listeners in selective auditory attention and how it affects their daily conversation. Nine CI users (five bilateral, three unilateral, and one bimodal) and eight NH listeners participated in this study. The behavioral speech recognition scores were collected using a matrix sentences test, and neural tracking to speech envelope was recorded using electroencephalography (EEG). Speech stimuli were presented at three different levels (75, 65, and 55 dB SPL) in the presence of two maskers from three spatially separated speakers. Different combinations of assisted/impaired hearing modes were evaluated for CI users, and the outcomes were analyzed in three categories: electric hearing only, acoustic hearing only, and electric + acoustic hearing. Our results showed that increasing the conversational sound level degraded the selective auditory attention in electrical hearing. On the other hand, increasing the sound level improved the selective auditory attention for the acoustic hearing group. In the NH listeners, however, increasing the sound level did not cause a significant change in the auditory attention. Our result implies that the effect of the sound level on selective auditory attention varies depending on the hearing modes, and the loudness control is necessary for the ease of attending to the conversation by CI users.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Piotr F. Czempik ◽  
Agnieszka Jarosińska ◽  
Krystyna Machlowska ◽  
Michał P. Pluta

Abstract Sleep disruption is common in patients in the intensive care unit (ICU). The aim of the study was to measure sound levels during sleep-protected time in the ICU, determine sources of sound, assess the impact of sound levels and patient-related factors on duration and quality of patients' sleep. The study was performed between 2018 and 2019. A commercially available smartphone application was used to measure ambient sound levels. Sleep duration was measured using the Patient's Sleep Behaviour Observational Tool. Sleep quality was assessed using the Richards-Campbell Sleep Questionnaire (RCSQ). The study population comprised 18 (58%) men and 13 (42%) women. There were numerous sources of sound. The median duration of sleep was 5 (IQR 3.5–5.7) hours. The median score on the RCSQ was 49 (IQR 28–71) out of 100 points. Sound levels were negatively correlated with sleep duration. The cut-off peak sound level, above which sleep duration was shorter than mean sleep duration in the cohort, was 57.9 dB. Simple smartphone applications can be useful to estimate sound levels in the ICU. There are numerous sources of sound in the ICU. Individual units should identify and eliminate their own sources of sound. Sources of sound producing peak sound levels above 57.9 dB may lead to shorter sleep and should be eliminated from the ICU environment. The sound levels had no effect on sleep quality.


2014 ◽  
Vol 2 (2) ◽  
pp. 21
Author(s):  
Modeni M. Sibanda

This article analyses the opportunities and complexities of the SADC mediation in Zimbabwe’s Global Political Agreement (GPA) in facilitating and operationalising theprinciples and values of peace, security, human rights and democracy as set out in Article 4 of the SADC treaty. It attempts to interrogate the extent to which the regional grouping’s mechanisms for enforcing its principles and values have been successful.   The article argues that despite SADC’s noble commitment to promoting the development of democratic institutions and practices, as well as encouraging the observance of universal human rights, peace and security, the resolution of the Zimbabwe crisis shows that, in practice, the operationalisation of SADC protocol principles and values have been a sorry saga of delays, secrecy, purported agreements and nothing concrete coming out of it.  Using the Zimbabwe case study, this article further argues that SADC either lacks appropriate power and authority or is reluctant to hold member states accountable.  This seems so, given that as a regional body, it has allowed itself to be utterly inadequate to the task envisioned by the organ in resolving the Zimbabwe crisis. The paper concludes that the sum of all this has had the effect of exposing SADC and it being perceived as a weak regional organisation.


PEDIATRICS ◽  
1975 ◽  
Vol 56 (4) ◽  
pp. 617-617
Author(s):  
Gōsta Blennow ◽  
Nils W. Svenningsen ◽  
Bengt Almquist

Recently we reported results from studies of incubator noise levels.1 It was found that in certain types of incubators the noise was considerable, and attention was called to the sound level in the construction of new incubators. Recently we had the opportunity to study an improved model of Isolette Infant Incubator Model C-86 where the mechanical noise from the electrically powered motor has been partially eliminated. With this modification it has been possible to lower the low-frequency sound levels to a certain degree in comparison to the levels registered in our study.


2016 ◽  
Vol 116 (6) ◽  
pp. 2550-2563 ◽  
Author(s):  
Calum Alex Grimsley ◽  
David Brian Green ◽  
Shobhana Sivaramakrishnan

The coding of sound level by ensembles of neurons improves the accuracy with which listeners identify how loud a sound is. In the auditory system, the rate at which neurons fire in response to changes in sound level is shaped by local networks. Voltage-gated conductances alter local output by regulating neuronal firing, but their role in modulating responses to sound level is unclear. We tested the effects of L-type calcium channels (CaL: CaV1.1–1.4) on sound-level coding in the central nucleus of the inferior colliculus (ICC) in the auditory midbrain. We characterized the contribution of CaL to the total calcium current in brain slices and then examined its effects on rate-level functions (RLFs) in vivo using single-unit recordings in awake mice. CaL is a high-threshold current and comprises ∼50% of the total calcium current in ICC neurons. In vivo, CaL activates at sound levels that evoke high firing rates. In RLFs that increase monotonically with sound level, CaL boosts spike rates at high sound levels and increases the maximum firing rate achieved. In different populations of RLFs that change nonmonotonically with sound level, CaL either suppresses or enhances firing at sound levels that evoke maximum firing. CaL multiplies the gain of monotonic RLFs with dynamic range and divides the gain of nonmonotonic RLFs with the width of the RLF. These results suggest that a single broad class of calcium channels activates enhancing and suppressing local circuits to regulate the sensitivity of neuronal populations to sound level.


2005 ◽  
Vol 24 (6) ◽  
pp. 33-37 ◽  
Author(s):  
Charlene Krueger ◽  
Susan Wall ◽  
Leslie Parker ◽  
Rose Nealis

Purpose: Elevated sound levels in the NICU may contribute to undesirable physiologic and behavioral effects in preterm infants. This study describes sound levels in a busy NICU in the southeastern U.S. and compares the findings with recommended NICU noise level standards.Design: NICU sound levels were recorded continuously at nine different locations within the NICU. Hourly measurements of loudness equivalent (Leq) sound level, sound level exceeded 10 percent of the time (L10), and maximum sound level (Lmax) were determined.Sample: Sound levels were sampled from nine different locations within the NICU.Main Outcome Variable: Sound levels are described using the hourly, A-weighted Leq, L10, and Lmax.Results: The overall average hourly Leq (M = 60.44 dB, range = 55–68 dB), L10 (M = 59.26 dB, range = 55–66 dB), and Lmax (M = 78.39, range = 69–93 dB) were often above the recommended sound levels (hourly Leq <50 dB, L10 <55 dB, and 1-second Lmax <70 dB). In addition, certain times of day, such as 6–7 AM and 10 AM–12 noon, were noisier than other times of day.


Author(s):  
Greicikelly Gaburro Paneto ◽  
Cristina Engel de Alvarez ◽  
Paulo Henrique Trombetta Zannin

In contemporary cities, and usually without realizing it, the population has been exposed to high sound pressure levels, which besides causing discomfort, can lead to health problems. Considering that a large part of this noise comes from emission from motor vehicles, this research aims to evaluate the sound behavior in sound environments configured by voids in the urban fabric, in order to identify whether open spaces can act as attenuators of sound levels. To obtain the expected results, the methodology used was structured from a review of the state-of-the-art and computer simulations relating the variables that influence the formation of urban space and sound emission and propagation, taking as a case study an urban portion of the municipality of Vitória/ES. In parallel, questionnaires were applied to evaluate the user's perception of their exposure. The measurement results indicated that the sound pressure levels caused by traffic noise are above the limit tolerated limit by the NBR norm 10151:2000 for the daytime period. In turn, the results obtained from the population indicated that there is little perception of noise by the users of the spaces surveyed.


Akustika ◽  
2019 ◽  
Vol 32 ◽  
pp. 335-345
Author(s):  
Walter Montano

The gas extraction wells are in Amazonian rainforest and by them there are their industrial facilities. The pipeline has about 800 km with four pumps stations and two compressor stations. The challenge of conducting sound measurements was important-there is no specialized literature-and other noise "sources" are howler monkeys, cicadidae chirping, woodpeckers, trees´foliage, etc. However the problem is simply because those fixed industrial facilities are the only ones. People live in isolated hamlet on the side of dirt roads, so they are exposed 24/7 to the continuous noise; at homes 4 km away from the plants the sound level is 60 dBC, but in the spectrum of ILFN tones could not be identified. This Paper presents the procedures that were developed to identify the ILFN tones, improving the methods proposed in ISO 1996-2, writing a software that "automatically eliminates" the sound levels that don´t belong to the industry,


Sign in / Sign up

Export Citation Format

Share Document