EVALUATION OF THE ANTIBACTERIAL ACTIVITY OF SOME MEDICINAL PLANTS EXTRACT AGAINST SOME HUMAN PATHOGENIC BACTERIA

2020 ◽  
Vol 17 (1) ◽  
pp. 9-15
Author(s):  
Anees Ahmad ◽  
Sayed Abdullah
2013 ◽  
Vol 3 (4) ◽  
pp. 272-274 ◽  
Author(s):  
Usman Ali Khan ◽  
Hazir Rahman ◽  
Zeeshan Niaz ◽  
Muhammad Qasim ◽  
Jafar Khan ◽  
...  

2020 ◽  
Vol 18 ◽  
Author(s):  
Mulugeta Mulat ◽  
Fazlurrahman Khan ◽  
Archana Pandita

Background: Medicinal plants have been used for treatments of various health ailments and the practices as a remedial back to thousands of years. Currently, plant-derived compounds used as alternative ways of treatment for multidrug-resistant pathogens. Objective: In the present study, various parts of six medical plants such as Solanum nigrum, Azadirachta indica, Vitex negundo, Mentha arvensis, Gloriosa superba, and Ocimum sanctum were extracted for obtaining biological active constituents. Methods: Soxhlet method of extraction was used for obtaining crude extracts. Agar disc diffusion and 96-well plate spectroscopic reading were used to detect the extract’s antibacterial and antibiofilm properties. Results: The obtained extracts were tested for antimicrobial and antibiofilm properties at 25 mg/mL concentrations. Maximum antibacterial activity was observed in O. sanctum chloroform extract (TUCE) against Staphylococcus aureus (24.33±1.52 mm), S. nigrum acetone extract (MAAC) against Salmonella Typhimurium (12.6 ± 1.5 mm) and Pseudomonas aeruginosa (15.0 ±2.0 mm). Only TUCE exhibited antibacterial activity at least a minimum inhibitory concentration of 0.781 mg/mL. Better antibiofilm activities were also exhibited by petroleum extracts of G. superba (KAPE) and S. nigrum (MAPE) against Escherichia coli, S. Typhimurium, P. aeruginosa and S. aureus. Moreover, S. nigrum acetone extract (MAAC) and O. sanctum chloroform extract (TUCE) were showed anti-swarming activity with a reduction of motility 56.3% against P. aeruginosa and 37.2% against S. aureus. MAAC also inhibits Las A activity (63.3% reduction) in P. aeruginosa. Conclusion: Extracts of TUCE, MAAC, MAPE, and KAPE were exhibited antibacterial and antibiofilm properties against the Gram-positive and Gram-negative pathogenic bacteria. GCMS identified chemical constituents are responsible for being biologically active.


Author(s):  
ANNAMALAI MADURAM ◽  
RAJU KAMARAJ

Objectives: The objectives of the study were to study the antibacterial activity for the various extracts of Clausena dentata against human pathogens. Clausena (Rutaceae) is a genus of about 23 species of unarmed trees and shrubs. The stem bark of C. dentata is used in veterinary medicine for the treatment of wounds and sprains. Even though C. dentata has a lot of potential medical uses, the study of microbiological properties is very scarce. Methods: The plant C. dentata was collected from Kadagaman, near Tiruvannamalai, Tamil Nadu, India, and authenticated by Centre for Advanced Study in Botany, University of Madras, Chennai. The dry powder of stem bark was extracted with hexane, chloroform, and methanol. The extracts were subjected to qualitative phytochemical screening and antibacterial activity against human pathogenic bacteria such as Escherichia coli, Salmonella Typhi, Klebsiella pneumonia, Vibrio cholerae, and Staphylococcus aureus and compared with ciprofloxacin. Results: Qualitative chemical tests revealed the presence of various phytochemicals such as alkaloids, glycosides, carbohydrate, proteins and amino acids, phytosterols, and volatile oil. The antibacterial activity result reveals that all the extracts were are more active against V. cholerae. The activity against Pseudomonas aeruginosa was mild. Conclusion: The activity against V. cholerae was comparable with that of 5 μg/mL ciprofloxacin at the concentration of C. dentata 40 μg/mL. The orders of antibacterial activity against human pathogenic bacteria are hexane, methanol, and chloroform extract of C. dentata.


Author(s):  
ARPITHA SHIVAMALLU ◽  
SHAILASREE SEKHAR

Objectives: The aim of this study was to evaluate the antioxidant, anti-inflammatory, and anti-cancer potencies of the Delonix regia bark, a first of its kind. Methods: The bark was extracted sequentially in Soxhlet apparatus with hexane, chloroform, and methanol in the increasing order of polarity. These extracts were subjected to find its antioxidant activity and total phenol content. Antibacterial activity against human pathogenic bacteria was tested. The anti-inflammatory properties were elucidated by its capacity to inhibit 15-lipoxygenase (LOX) and human cyclooxygenase (COX)-2. Cell cytotoxic capacity was evaluated against MCF-7 cells breast cancer cell lines. Results: Liquid chromatography (LC)-Mass Spectroscopy (MS) fingerprint of the methanol extract identified a total of 14 polyphenols, of which five were structurally characterized based on their mass-charge ratio [M-H]− peak, UV-vis absorption in comparison to published data. Antibacterial activity by disk diffusion inhibited human pathogenic bacteria. Bacterial biofilm inhibition capacity of extract (750 mg) imaged by confocal laser scanning microscopy revealed loss of microcolonies. Extract when tested for 15-LOX inhibition exhibited IC50 values of 94.5 ± 1.23 mg.mL−1 by enzyme kinetics studies using spectrophotometric techniques. Similarly, it could inhibit COX-2 enzyme at relatively lower concentrations (32.18 ± 1.91 mg.mL−1). Further, it quenched free radicals produced by Fentons’ reagent studied by DNS-nicking assay indicating its strong antioxidant property with the capacity to protect DNA. In vitro cytotoxicity was evaluated by 3-(4,5-dimethylthylthiazol-2-yl)-2,5-diphynyl tetrazolium bromide assay and apoptosis induced in MCF-7 cells was assessed morphologically. Conclusion: Our data suggest that D. regia bark methanol extract exerts its therapeutic activity for further pharmaceutical evaluations. Further studies are necessary to determine the mechanisms of these pharmacological properties.


2021 ◽  
Author(s):  
Hamza Gadhoumi ◽  
Akrem Hayouni EL ◽  
Enriqueta Martinez-Rojas ◽  
Walid Yeddes ◽  
Moufida Saidani Tounsi

Abstract To prevent foodborne diseases and extend shelf-life, antimicrobial agents may be used in food to inhibit the growth of undesired microorganisms. The present study was aimed to determine the antimicrobial and antifungal activities of the fermented medicinal plants extract using Lactobacillus acidophilus ATCC 4356. The fermentation kinetic parameters, biochemical composition and the volatile compounds of the fermented plant extract was assessed. The results showed that, the fermented plants beverage exhibited high content in polyphenols, flavonoids, and tannins (152.7 mg AGE/ L; 93.6 mg RE/ L; and 62.1mg CE/ L, respectively) to compare with the extract without fermentation. The GC-MS headspace analyses showed the presence of twenty-four interesting volatile compounds. The richness of the fermented plants extracts of polyphenols content and the bioactive compound such as Eucalyptol, Camphene, α-Phellandrene, α-Terpinene improve their biological activity. In addition, the fermented plants extract exhibited a high antimicrobial potential against resistance pathogenic bacteria and fungi determined by different methods. The maximum inhibition showed in the fermented plants beverage against Escherichia coli 25922/3, Pseudomonas aeruginosa 27853 ATCC, Staphylococcus aureus 29213 ATCC, Enterococcus aerogenes 13048 ATCC, Phytophthora infestans P3 4/91 R+, Phytophthora infestans P4 20/01 R, Phytophthora infestans (GL-1). The obtained results support the hypothesis of using whey as a functional ingredient to improve food preservation. The bioprocesses of fermentation technology enhance antimicrobial and antifungal activities which could be used in different industrial applications.


Sign in / Sign up

Export Citation Format

Share Document