Specification of technical grade sulfur hexafluoride (SF6) for use in electrical equipment

2015 ◽  
2020 ◽  
Author(s):  
Peter G. Simmonds ◽  
Matthew Rigby ◽  
Alistair J. Manning ◽  
Sunyoung Park ◽  
Kieran M. Stanley ◽  
...  

Abstract. We report a 40-year history of SF6 atmospheric mole fractions measured at the Advanced Global Atmospheric Gases Experiment (AGAGE) monitoring sites, combined with archived air samples to determine emission estimates from 1978–2018. Previously we reported a global emission rate of 7.3 ± 0.6 Gigagrams (Gg) yr−1 in 2008 and over the past decade emissions have continued to increase by about 24 % to 9.04 ± 0.35 Gg yr−1 in 2018. We show that changing patterns in SF6 consumption from developed (Kyoto Protocol Annex-1) to developing countries (non-Annex-1) and the rapid global expansion of the electric power industry, mainly in Asia, have increased the demand for SF6-insulated switchgear, circuit breakers and transformers. The large bank of SF6 sequestered in this electrical equipment provides a substantial source of emissions from maintenance, replacement and continuous leakage. Other emissive sources of SF6 occur from the magnesium, aluminium, electronics industries and more minor industrial applications. More recently, reported emissions, including those from electrical equipment and metal industries, primarily in the Annex-1 countries, have steadily declined through substitution of alternative blanketing gases and technological improvements in less emissive equipment and more efficient industrial practices. Conversely, in the non-Annex-1 countries SF6 emissions have increased due to an expansion in the growth of the electrical power, metal and electronics industries to support their development. There is an annual difference of 2.5–5 Gg yr−1 (1990–2018) between our modelled top-down emissions and the UNFCCC reported bottom-up emissions, which we attempt to reconcile through analysis of the potential contribution of emissions from the various industrial applications which use SF6. We also investigate regional emissions in East Asia (China, S. Korea) and Western Europe and their respective contributions to the global atmospheric SF6 inventory. On an average annual basis, our estimated emissions from the whole of China are approximately 10 times greater than emissions from Western Europe. In 2018, our modelled Chinese and Western European emissions accounted for ~ 36 % and 3.1 %, respectively, of our global SF6 emissions estimate.


2020 ◽  
Vol 11 (1) ◽  
pp. 197
Author(s):  
Yalong Li ◽  
Xiaoxing Zhang ◽  
Yalong Xia ◽  
Yi Li ◽  
Zhuo Wei ◽  
...  

Sulfur hexafluoride (SF6) is widely used in the power industry because of its excellent insulation and arc extinguishing performance. However, the high greenhouse effect of this material is being restricted by many countries around the world, thereby discouraging its usage. As a potential alternative to SF6, the compatibility of C5F10O with conductive copper materials used in electrical equipment is of great significance in ensuring the safe and stable operation of environmentally friendly gas-insulated equipment. In this paper, the interaction among C5F10O/N2, C5F10O/air gas mixture, and copper was studied via experiments and simulations. When the C5F10O/N2 (or air) gas mixture comes in contact with copper at the gas–solid interface, a small portion of C5F10O is decomposed to form C3F6 (or C3F6 and C3F6O) at high temperatures. Meanwhile, at low temperatures (120 °C), the C5F10O/air gas mixture becomes more compatible with copper than with the C5F10O/N2 gas mixture. When the experiment temperatures range between 170 °C and 220 °C, the compatibility of the C5F10O/air gas mixture with copper is significantly inferior to its compatibility with copper. Under high temperatures, the C5F10O/air gas mixture shows severe corrosion on the copper surface due to the presence of O2, forms a thick cubic grain, and emits irritating gases. The simulations show that the carbonyl group in C5F10O is chemically active and can be easily adsorbed on the copper surface. An anti-corrosion treatment must be performed on copper materials in manufacturing equipment. The findings provide an important reference for the application of C5F10O gas mixture.


Processes ◽  
2019 ◽  
Vol 7 (4) ◽  
pp. 216 ◽  
Author(s):  
Yong Wang ◽  
Danqing Huang ◽  
Jing Liu ◽  
Yaru Zhang ◽  
Lian Zeng

Sulfur hexafluoride (SF6) shows excellent insulation performance as an insulating gas. It is suitable for various climate conditions due to its low boiling point (−64 °C). Therefore, it has been widely used in power grid equipment. However, its global warming potential (GWP) is 23,500 times higher than that of CO2. Thus, it is imperative to find an environmentally friendly insulating gas with excellent insulation performance, lower GWP, and which is harmless to equipment and workers to replace SF6. In this review, four possible alternatives, including perfluorocarbons, trifluoroiodomethane, perfluorinated ketones, and fluoronitrile are reviewed in terms of basic physicochemical properties, insulation properties, decomposition properties, and compatibility with metals. The influences of trace H2O or O2 on their insulation performances are also discussed. The insulation strengths of these insulating gases were comparable to or higher than that of SF6. The GWPs of these insulating gases were lower than that of SF6. Due to their relatively high boiling point, they should be used as a mixture with buffering gases with low boiling points. Based on these four characteristics, perfluorinated ketones (C5F10O and C6F12O) and fluoronitrile (C4F7N) could partially substitute SF6 in some electrical equipment. Finally, some future needs and perspectives of environmentally friendly insulating gases are addressed for further studies.


2020 ◽  
Vol 20 (12) ◽  
pp. 7271-7290 ◽  
Author(s):  
Peter G. Simmonds ◽  
Matthew Rigby ◽  
Alistair J. Manning ◽  
Sunyoung Park ◽  
Kieran M. Stanley ◽  
...  

Abstract. We report a 40-year history of SF6 atmospheric mole fractions measured at the Advanced Global Atmospheric Gases Experiment (AGAGE) monitoring sites, combined with archived air samples, to determine emission estimates from 1978 to 2018. Previously we reported a global emission rate of 7.3±0.6 Gg yr−1 in 2008 and over the past decade emissions have continued to increase by about 24 % to 9.04±0.35 Gg yr−1 in 2018. We show that changing patterns in SF6 consumption from developed (Kyoto Protocol Annex-1) to developing countries (non-Annex-1) and the rapid global expansion of the electric power industry, mainly in Asia, have increased the demand for SF6-insulated switchgear, circuit breakers, and transformers. The large bank of SF6 sequestered in this electrical equipment provides a substantial source of emissions from maintenance, replacement, and continuous leakage. Other emissive sources of SF6 occur from the magnesium, aluminium, and electronics industries as well as more minor industrial applications. More recently, reported emissions, including those from electrical equipment and metal industries, primarily in the Annex-1 countries, have declined steadily through substitution of alternative blanketing gases and technological improvements in less emissive equipment and more efficient industrial practices. Nevertheless, there are still demands for SF6 in Annex-1 countries due to economic growth, as well as continuing emissions from older equipment and additional emissions from newly installed SF6-insulated electrical equipment, although at low emission rates. In addition, in the non-Annex-1 countries, SF6 emissions have increased due to an expansion in the growth of the electrical power, metal, and electronics industries to support their continuing development. There is an annual difference of 2.5–5 Gg yr−1 (1990–2018) between our modelled top-down emissions and the UNFCCC-reported bottom-up emissions (United Nations Framework Convention on Climate Change), which we attempt to reconcile through analysis of the potential contribution of emissions from the various industrial applications which use SF6. We also investigate regional emissions in East Asia (China, S. Korea) and western Europe and their respective contributions to the global atmospheric SF6 inventory. On an average annual basis, our estimated emissions from the whole of China are approximately 10 times greater than emissions from western Europe. In 2018, our modelled Chinese and western European emissions accounted for ∼36 % and 3.1 %, respectively, of our global SF6 emissions estimate.


Nanomaterials ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 314
Author(s):  
Wenjun Hou ◽  
Hongwan Mi ◽  
Ruochen Peng ◽  
Shudi Peng ◽  
Wen Zeng ◽  
...  

First-principle calculations were carried out to simulate the three decomposition gases (SO2, SOF2, and SO2F2) of sulfur hexafluoride (SF6) on Ga-doped MoS2 (Ga-MoS2) monolayer. Based on density functional theory (DFT), pure MoS2 and multiple gas molecules (SF6, SO2, SOF2, and SO2F2) were built and optimized to the most stable structure. Four types of Ga-doped positions were considered and it was found that Ga dopant preferred to be adsorbed by the top of Mo atom (TMo). For the best adsorption effect, two ways of SO2, SOF2, and SO2F2 to approach the doping model were compared and the most favorable mode was selected. The adsorption parameters of Ga-MoS2 and intrinsic MoS2 were calculated to analyze adsorption properties of Ga-MoS2 towards three gases. These analyses suggested that Ga-MoS2 could be a good gas-sensing material for SO2 and SO2F2, while it was not suitable for SOF2 sensing due to its weak adsorption. This work provides a theoretical basis for the development of Ga-MoS2 materials with the hope that it can be used as a good gas-sensing material for electrical equipment.


2016 ◽  
Vol 723 ◽  
pp. 344-348
Author(s):  
Guo Xing Li ◽  
Lin Li ◽  
Zi Qiu Jiang

To study the low temperature liquefaction characteristics of SF6 for the operation security of electric equipments in cold area, the writer carries out the low temperature liquefaction test of SF6 respectively in laboratory and outdoors by using SF6 gas low temperature experimental apparatus. According to the results of the test and the Beattie-Bridgman SF6 empirical formula, SF6 gas state parameter curve is plotted and a concise practical SF6 gas state parameter formula is got. This formula is more applicable to electric equipments outdoors. The results show that SF6 gas is easier to liquefy in cold area, and the liquefaction temperature of SF6 gas is in proportion to gas pressure. So the liquefaction temperature of electric equipments operated in cold area should not be higher than the lowest area temperature. Otherwise, measures must be taken to prevent SF6 gas from liquefaction.


Sign in / Sign up

Export Citation Format

Share Document