scholarly journals NEW POLYMERIC COMPOSITES BASED ON EPOXY RESIN WITH TECHOGENIC WASTES

Author(s):  
О. Шарапов ◽  
Oleg Sharapov ◽  
Н. Кирюшина ◽  
Natal'ya Kiryushina ◽  
Н. Шунькин ◽  
...  

The microstructure of gas silicate wastes is investigated. It is established, differences in particle size distribution affect rheology, abrasivity, abrasion resistance and material strength. The kinetics of polymerization of epoxy binders in the initial and filled samples is investigated: filler particles prevent the crosslinking of polymer molecules, breaking the bulk structure of the polymer matrix. As a result of research, the possibility of directional regulation of the physicomechanical properties of epoxy com-posites due to the introduction of dispersed fillers is shown, giving the binder complexes higher physi-comechanical properties, which expands the areas of their application in most industries. The theoret-ical justification is that the thermal parameters of the filler are much lower than the parameters of the main raw material. At the same time, the porosity of the filler material due to its own pores and heter-ogeneous materials formed during mixing gives the effect of thermal energy absorption, which ulti-mately leads to an increase in the thermal resistance of the samples and a slight decrease in the ther-mal conductivity coefficient.

Author(s):  
Li Bao ◽  
Ting-an Zhang ◽  
Weimin Long ◽  
Anh V. Nguyen ◽  
Guozhi Lv ◽  
...  

2014 ◽  
Vol 968 ◽  
pp. 40-43 ◽  
Author(s):  
Cong Xue Tian

Short sulfate process was developed to produce rutile TiO2 white pigment by using low concentration industrial TiOSO4 solution as raw material via self-generated seeded thermal hydrolysis route. The concentration of TiOSO4 solution had significantly influenced the structure and pigment properties of rutile TiO2 white pigment. The samples were characterized by XRD, particle size distribution and pigment properties test. Appropriate concentration of TiOSO4 was beneficial to promoting hydrolysis process in a proper way and obtaining favorable structure and high quality white pigment. The optimized concentration of TiOSO4 solution was of 191.20 g/L.


2010 ◽  
Vol 638-642 ◽  
pp. 3925-3930 ◽  
Author(s):  
K.G. Wang ◽  
X. Ding

The dynamics of phase coarsening at ultra-high volume fractions is studied based on two-dimensional phase-field simulations by numerically solving the time-dependent Ginzburg-Landau and Cahn-Hilliard equations. The kinetics of phase coarsening at ultra-high volume fractions is discovered. The microstructural evolutions for different ultra-high volume fractions are shown. The scaled particle size distribution as functions of the dispersoid volume fraction is presented. The particle size distribution derived from our simulation at ultra-high volume fractions is close to Wagner's particle size distribution due to interface-controlled ripening rather than Hillert's grain size distribution in grain growth. The changes of shapes of particles are carefully studied with increase of volume fraction. It is found that more liquid-filled triple junctions are formed as a result of particle shape accommodation with increase of volume fraction at the regime of ultra-high volume fraction.


2017 ◽  
Vol 898 ◽  
pp. 1717-1723 ◽  
Author(s):  
Xue Mei Yi ◽  
Shota Suzuki ◽  
Xiong Zhang Liu ◽  
Ran Guo ◽  
Tomohiro Akiyama

Combustion synthesis (CS) of β-SiAlON was conducted using a 3D ball mill, with a focus on the effect of the 2D/3D ball mill premixing conditions on the CS raw material particle size as well as on the yield and grain shape of the final products. The results showed that the particle size distribution of the raw materials was significantly affected by the premixing conditions. Various particle sizes and particle size distributions could easily be obtained by using a 3D mill instead of a 2D mill due to the complex biaxial rotation movement of 3D milling. The particle size was more sensitive to the rotation ratio (vertical spin/horizontal spin, Vv/Vh) than the rotation rate when using 3D milling. Finally, β-SiAlON with less than 5 mass% unreacted Si was obtained using premix milling conditions of 135×200 [vertical spin (rpm) × horizontal spin (rpm)]. The grain shapes of the final products were clearly influenced by the particle size distribution of the raw mixtures.


Sign in / Sign up

Export Citation Format

Share Document