Reliability and Validity of Two Measurement Systems in the Quantification of Jump Performance

2014 ◽  
Vol 62 (1) ◽  

There are different devices on the market for assessing strength and power in vertical jumping as a fundamental requisite of an athlete’s performance. The purpose of this study was to assess the reliability and validity of two instruments measuring force, power, velocity, and jump height in squat jumps. Myotest® (MYO) (Myotest SA, Switzerland) was compared with force plate measurements (Quattro Jump® [QUATTRO], Kistler, Switzerland & SPSport Software, Trins, Austria). Forty-three frontier-guards (age range 25–58 years) performed twice a series of five squat jumps (SJ) simultaneously using MYO device along with QUATTRO force plate. Reliability was analysed using ICC, CV and RMSE. Results for reliability for both devices show good results with ICCs ranging from 0.910 to 0.955, and CVs ranging from 2.33% to 6.59% for discrete outcome variables. The validity of the methods was investigated using the Limits of Agreement (LoA) method. MYO overestimated jump performance compared to QUATTRO with a bias of 4.38 cm (±2.59) for jump height, 1.82 Watt/kg (±4.08) for power, and 0.85 N/kg (±1.24) for force. For velocity the two methods displayed good agreement. In conclusion, based on the variability of the measurements, coaches may use complemental variables in addition to jump data in the realm of performance testing and training control to better understand the performance of their athletes. In addition, on the basis of the results regarding the validity interchangeability of the two systems is limited.

2021 ◽  
Vol 11 (3) ◽  
pp. 1105
Author(s):  
Philip X. Fuchs ◽  
Julia Mitteregger ◽  
Dominik Hoelbling ◽  
Hans-Joachim K. Menzel ◽  
Jeffrey W. Bell ◽  
...  

In performance testing, it is well-established that general jump types like squat and countermovement jumps have great reliability, but the relationship with volleyball spike jumps is unclear. The objectives of this study were to analyze the relationship between general and spike jumps and to provide improved models for predicting spike jump height by general jump performance. Thirty female and male elite volleyball players performed general and spike jumps in a randomized order. Two AMTI force plates (2000 Hz) and 13 Vicon MX cameras (250 Hz) captured kinematic and kinetic data. Correlation and stepwise-forward regression analyses were conducted at p < 0.05. Simple regression models with general jump height as the only predictor for spike jumps revealed 0.52 ≤ R2 ≤ 0.76 for all general jumps in both sexes (p < 0.05). Alternative models including rate of force development and impulse improved predictions during squat jumps from R2 = 0.76 to R2 = 0.92 (p < 0.05) in females and from R2 = 0.61 to R2 = 0.71 (p < 0.05) in males, and during countermovement jumps with arm swing from R2 = 0.52 to R2 = 0.78 (p < 0.01) in males. The findings include improved prediction models for spike jump height based on general jump performance. The derived formulas can be applied in general jump testing to improve the assessment of sport-specific spike jump performance.


2007 ◽  
Vol 23 (3) ◽  
pp. 180-189 ◽  
Author(s):  
Niell G. Elvin ◽  
Alex A. Elvin ◽  
Steven P. Arnoczky

Modern electronics allow for the unobtrusive measurement of accelerations outside the laboratory using wireless sensor nodes. The ability to accurately measure joint accelerations under unrestricted conditions, and to correlate them with jump height and landing force, could provide important data to better understand joint mechanics subject to real-life conditions. This study investigates the correlation between peak vertical ground reaction forces, as measured by a force plate, and tibial axial accelerations during free vertical jumping. The jump heights calculated from force-plate data and accelerometer measurements are also compared. For six male subjects participating in this study, the average coefficient of determination between peak ground reaction force and peak tibial axial acceleration is found to be 0.81. The coefficient of determination between jump height calculated using force plate and accelerometer data is 0.88. Data show that the landing forces could be as high as 8 body weights of the jumper. The measured peak tibial accelerations ranged up to 42 g. Jump heights calculated from force plate and accelerometer sensors data differed by less than 2.5 cm. It is found that both impact accelerations and landing forces are only weakly correlated with jump height (the average coefficient of determination is 0.12). This study shows that unobtrusive accelerometers can be used to determine the ground reaction forces experienced in a jump landing. Whereas the device also permitted an accurate determination of jump height, there was no correlation between peak ground reaction force and jump height.


2017 ◽  
Vol 12 (5) ◽  
pp. 661-664 ◽  
Author(s):  
Matthew Driller ◽  
Francisco Tavares ◽  
Daniel McMaster ◽  
Shannon O’Donnell

The use of counter-movement jumps as a measure of neuromuscular performance in athletes has become common in the sport setting. Accurate methods of measuring jump parameters are often expensive, difficult to transport and require expert knowledge. A new smartphone application ( My Jump) claims to be a valid and reliable tool for assessing jump height but is yet to be evaluated by independent researchers. Sixty-one recreational athletes (30 male/31 female, mean ± SD; age: 20 ± 4 years) each performed three counter-movement jumps (totalling 183 jumps) on a force plate following a standardised warm-up. All jumps were recorded using an iPhone 6 s and analysed for jump height (m) and flight time (s) using the My Jump application. Jumps were compared between a force plate and My Jump for validity with inter-scorer reliability also assessed. Results show that My Jump is valid (mean bias = 0.9 cm, r = 0.96) and reliable (typical error of estimate = 1.4 cm) for assessing jump performance in recreational athletes using an iPhone 6 s with a 240 Hz high-speed camera. My Jump is a cost-effective and easy-to-use alternative for measuring vertical jump performance without the need for specialist equipment or expertise.


2005 ◽  
Vol 99 (3) ◽  
pp. 986-994 ◽  
Author(s):  
Jens Bojsen-Møller ◽  
S. Peter Magnusson ◽  
Lars Raundahl Rasmussen ◽  
Michael Kjaer ◽  
Per Aagaard

Contractile force is transmitted to the skeleton through tendons and aponeuroses, and, although it is appreciated that the mechanocharacteristics of these tissues play an important role for movement performance with respect to energy storage, the association between tendon mechanical properties and the contractile muscle output during high-force movement tasks remains elusive. The purpose of the study was to investigate the relation between the mechanical properties of the connective tissue and muscle performance in maximal isometric and dynamic muscle actions. Sixteen trained men participated in the study. The mechanical properties of the vastus lateralis tendon-aponeurosis complex were assessed by ultrasonography. Maximal isometric knee extensor force and rate of torque development (RTD) were determined. Dynamic performance was assessed by maximal squat jumps and countermovement jumps on a force plate. From the vertical ground reaction force, maximal jump height, jump power, and force-/velocity-related determinants of jump performance were obtained. RTD was positively related to the stiffness of the tendinous structures ( r = 0.55, P < 0.05), indicating that tendon mechanical properties may account for up to 30% of the variance in RTD. A correlation was observed between stiffness and maximal jump height in squat jumps and countermovement jumps ( r = 0.64, P < 0.05 and r = 0.55, P < 0.05). Power, force, and velocity parameters obtained during the jumps were significantly correlated to tendon stiffness. These data indicate that muscle output in high-force isometric and dynamic muscle actions is positively related to the stiffness of the tendinous structures, possibly by means of a more effective force transmission from the contractile elements to the bone.


2020 ◽  
Vol 32 (1) ◽  
pp. 23-29 ◽  
Author(s):  
Anthony Birat ◽  
David Sebillaud ◽  
Pierre Bourdier ◽  
Eric Doré ◽  
Pascale Duché ◽  
...  

Purpose: To examine the effect of drop height on vertical jumping performance in children with respect to sex and maturity status. Methods: Thirty-seven pre-pubertal, 71 circa-pubertal, and 69 post-pubertal boys and girls performed, in a randomized order, 2 squat jumps, 2 countermovement jumps, and 2 drop jumps (DJ) from heights of 20, 30, 40, 50, 60, and 70 cm. The trial with the best jump height in each test was used for analysis. Results: No significant sex × maturity status × jump type interaction for jump height was observed. However, on average, the children jumped higher in the countermovement jump than in squat jump and DJs (+1.2 and +1.6 cm, P < .001, respectively), with no significant differences between DJs and squat jumps or between DJs when increasing drop heights. Regarding DJs, 59.3% of the participants jumped higher from drop heights of 20 to 40 cm. Conclusions: Children, independent of sex and maturity status, performed best in the countermovement jump, and no performance gain was obtained by dropping from heights of 20 to 70 cm. During maturation, the use of drop heights between 20 and 40 cm may be considered in plyometric training, but the optimum height must be obtained individually.


2021 ◽  
pp. 1-9
Author(s):  
Jessica G. Hunter ◽  
Gina L. Garcia ◽  
Sushant M. Ranadive ◽  
Jae Kun Shim ◽  
Ross H. Miller

Context: Understanding if roller massage prior to a run can mitigate fatigue-related decrements in muscle force production during prolonged running is important because of the association between fatigue and running-related injury. Objective: The authors investigated whether a bout of roller massage prior to running would (1) mitigate fatigue-related increases in vertical average load rate and free moment of the ground reaction force of running and (2) mitigate decreases in maximal countermovement jump height. Design: Repeated-measures study. Setting: Laboratory. Participants: A total of 14 recreational endurance athletes (11 men and 3 women) volunteered for the study. Interventions: A 12.5-minute foam roller protocol for the lower extremities and a fatiguing 30-minute treadmill run. Main Outcome Measures: Vertical average load rate, free moment, and maximal jump height before (PRE) and after (POST) the fatiguing treadmill run on separate experimental days: once where participants sat quietly prior to the fatiguing run (REST) and another where the foam roller protocol was performed prior to the run (ROLL). Results: A 2-way multiple analysis of variance found no significant differences in vertical average load rate, free moment, and jump height between PRE/POST times in both REST/ROLL conditions. Conclusions: The authors concluded that recreational endurance athletes maintain running mechanics and jump performance after a fatiguing run regardless of prerun roller massage and may not rely on prerun roller massage as a form of injury prevention.


2021 ◽  
Vol 12 ◽  
Author(s):  
José R. Alvero-Cruz ◽  
Mieszko Brikis ◽  
Phil Chilibeck ◽  
Petra Frings-Meuthen ◽  
Jose F. Vico Guzmán ◽  
...  

Vertical jumping power declines with advancing age, which is theoretically explicable by loss of muscle mass and increases in body fat. However, the results of previous cross-sectional studies remain inconsistent on these relationships. The present study included 256 masters athletes who competed at the 2018 track and field world championships in Málaga, Spain. We assessed body composition with bioelectrical impedance (Inbody S10) and vertical jumping power with a Leonardo ground reaction force platform. Relationships between age, jumping power, and body composition were analyzed by correlation and regression analyses. Hierarchical multiple regression analysis was used to evaluate effects of each factor on vertical jumping power. Age-related rates of decreases in maximal power and jump height were similar between male and female athletes. Percent fat-free mass and percent body fat were negatively and positively, respectively, associated with age in masters athletes and were comparable to those previously observed in the general population. Moreover, these effects in body composition can, to a great extent, explain the age-related decline in jumping power, an effect that seems at least partly independent of age. Finally, the multiple regression model to determine independent predictors of vertical jump performance yielded an overall R2 value of 0.75 with the inclusion of (1) athletic specialization in power events, (2) percent fat-free mass, and (3) phase angle. However, partial regression yielded significant effects of age, but not gender, on peak power, even when adjusting for athletic specialization, percent fat-free mass, and phase angle. We concluded that loss of skeletal muscle mass and changes in bio-impedance phase angle are important contributors to the age-related reduction in anaerobic power, even in adults who maintain high levels of physical activity into old age. However, age per se remains a significant predictor of vertical jump performance, further demonstrating deteriorated muscle quality at old age (sarcosthenia).


2014 ◽  
Vol 8 (1) ◽  
Author(s):  
Joao A. C. Barros ◽  
Llanel Florendo ◽  
Yvonne Le

The few studies that attempted to increase jump height in figure skaters (Haguenauer et al., 2005, Law & Ste-Marie, 2005) have failed to do so. These studies did not focus on increasing knee flexion, a critical factor for jump height (Moran & Wallace, 2007, Vanezis & Lees, 2005). Auditory biofeedback has been shown to modify posture, balance and cycling performance (Dozza et al., 2011; Nicolai et al., 2010; Liu & Jensen, 2009) and could potentially be used to increase knee flexion in figure skaters. To investigate the effects of auditory biofeedback on the performance of Lutz jumps. Thirteen intermediate level female adolescence figure skaters performed 6 off-ice Lutz jumps under each of 2 conditions: 1) WITH auditory biofeedback; 2) and WITHOUT auditory biofeedback. Auditory biofeedback was provided via EMG Retrainer. Separate repeated measures ANOVAs were conducted for time in the air, knee flexion and EMG activity. Differences between conditions for time in the air (p = .012) and knee flexion (p = .049) were identified. Auditory biofeedback increased knee flexion and decreased jump height. In this case, auditory biofeedback might have directed performers attention to an internal cue disrupting performance (Wulf, 2007).


2021 ◽  
pp. 149-157
Author(s):  
Manuel V. Garnacho-Castaño ◽  
Marcos Faundez-Zanuy ◽  
Noemí Serra-Payá ◽  
José L. Maté-Muñoz ◽  
Josep López-Xarbau ◽  
...  

This study aimed to assess the reliability and validity of the Polar V800 to measure vertical jump height. Twenty-two physically active healthy men (age: 22.89 ± 4.23 years; body mass: 70.74 ± 8.04 kg; height: 1.74 ± 0.76 m) were recruited for the study. The reliability was evaluated by comparing measurements acquired by the Polar V800 in two identical testing sessions one week apart. Validity was assessed by comparing measurements simultaneously obtained using a force platform (gold standard), high-speed camera and the Polar V800 during squat jump (SJ) and countermovement jump (CMJ) tests. In the test-retest reliability, high intraclass correlation coefficients (ICCs) were observed (mean: 0.90, SJ and CMJ) in the Polar V800. There was no significant systematic bias ± random errors (p > 0.05) between test-retest. Low coefficients of variation (<5%) were detected in both jumps in the Polar V800. In the validity assessment, similar jump height was detected among devices (p > 0.05). There was almost perfect agreement between the Polar V800 compared to a force platform for the SJ and CMJ tests (Mean ICCs = 0.95; no systematic bias ± random errors in SJ mean: -0.38 ± 2.10 cm, p > 0.05). Mean ICC between the Polar V800 versus high-speed camera was 0.91 for the SJ and CMJ tests, however, a significant systematic bias ± random error (0.97 ± 2.60 cm; p = 0.01) was detected in CMJ test. The Polar V800 offers valid, compared to force platform, and reliable information about vertical jump height performance in physically active healthy young men.


Sign in / Sign up

Export Citation Format

Share Document