Faculty Opinions recommendation of Comprehensive identification of conditionally essential genes in mycobacteria.

Author(s):  
Ralph Isberg
Keyword(s):  
2018 ◽  
Author(s):  
Yuwei Zhang ◽  
Yang Tao ◽  
Huihui Ji ◽  
Wei Li ◽  
Xingli Guo ◽  
...  

Genetics ◽  
1988 ◽  
Vol 120 (4) ◽  
pp. 977-986
Author(s):  
K J Kemphues ◽  
M Kusch ◽  
N Wolf

Abstract We have analyzed a set of linkage group (LG) II maternal-effect lethal mutations in Caenorhabditis elegans isolated by a new screening procedure. Screens of 12,455 F1 progeny from mutagenized adults resulted in the recovery of 54 maternal-effect lethal mutations identifying 29 genes. Of the 54 mutations, 39 are strict maternal-effect mutations defining 17 genes. These 17 genes fall into two classes distinguished by frequency of mutation to strict maternal-effect lethality. The smaller class, comprised of four genes, mutated to strict maternal-effect lethality at a frequency close to 5 X 10(-4), a rate typical of essential genes in C. elegans. Two of these genes are expressed during oogenesis and required exclusively for embryogenesis (pure maternal genes), one appears to be required specifically for meiosis, and the fourth has a more complex pattern of expression. The other 13 genes were represented by only one or two strict maternal alleles each. Two of these are identical genes previously identified by nonmaternal embryonic lethal mutations. We interpret our results to mean that although many C. elegans genes can mutate to strict maternal-effect lethality, most genes mutate to that phenotype rarely. Pure maternal genes, however, are among a smaller class of genes that mutate to maternal-effect lethality at typical rates. If our interpretation is correct, we are near saturation for pure maternal genes in the region of LG II balanced by mnC1. We conclude that the number of pure maternal genes in C. elegans is small, being probably not much higher than 12.


2021 ◽  
Vol 22 (10) ◽  
pp. 5056
Author(s):  
Tulio L. Campos ◽  
Pasi K. Korhonen ◽  
Neil D. Young

Experimental studies of Caenorhabditis elegans and Drosophila melanogaster have contributed substantially to our understanding of molecular and cellular processes in metazoans at large. Since the publication of their genomes, functional genomic investigations have identified genes that are essential or non-essential for survival in each species. Recently, a range of features linked to gene essentiality have been inferred using a machine learning (ML)-based approach, allowing essentiality predictions within a species. Nevertheless, predictions between species are still elusive. Here, we undertake a comprehensive study using ML to discover and validate features of essential genes common to both C. elegans and D. melanogaster. We demonstrate that the cross-species prediction of gene essentiality is possible using a subset of features linked to nucleotide/protein sequences, protein orthology and subcellular localisation, single-cell RNA-seq, and histone methylation markers. Complementary analyses showed that essential genes are enriched for transcription and translation functions and are preferentially located away from heterochromatin regions of C. elegans and D. melanogaster chromosomes. The present work should enable the cross-prediction of essential genes between model and non-model metazoans.


Genetics ◽  
2001 ◽  
Vol 157 (4) ◽  
pp. 1493-1502
Author(s):  
Richard D Gardner ◽  
Atasi Poddar ◽  
Chris Yellman ◽  
Penny A Tavormina ◽  
M Cristina Monteagudo ◽  
...  

Abstract We have measured the activity of the spindle checkpoint in null mutants lacking kinetochore activity in the yeast Saccharomyces cerevisiae. We constructed deletion mutants for nonessential genes by one-step gene replacements. We constructed heterozygous deletions of one copy of essential genes in diploid cells and purified spores containing the deletion allele. In addition, we made gene fusions for three essential genes to target the encoded proteins for proteolysis (degron alleles). We determined that Ndc10p, Ctf13p, and Cep3p are required for checkpoint activity. In contrast, cells lacking Cbf1p, Ctf19p, Mcm21p, Slk19p, Cse4p, Mif2p, Mck1p, and Kar3p are checkpoint proficient. We conclude that the kinetochore plays a critical role in checkpoint signaling in S. cerevisiae. Spindle checkpoint activity maps to a discreet domain within the kinetochore and depends on the CBF3 protein complex.


Virulence ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 446-464 ◽  
Author(s):  
Jesús Arenas ◽  
Aldert Zomer ◽  
Jose Harders-Westerveen ◽  
Hester J. Bootsma ◽  
Marien I. De Jonge ◽  
...  

2017 ◽  
Vol 110 (4) ◽  
pp. 607-614 ◽  
Author(s):  
Yan-Jiao Zhang ◽  
Guozhong Chen ◽  
Huiyuan Lin ◽  
Pan Wang ◽  
Baozhi Kuang ◽  
...  

2014 ◽  
Vol 42 (15) ◽  
pp. 9838-9853 ◽  
Author(s):  
Saeed Kaboli ◽  
Takuya Yamakawa ◽  
Keisuke Sunada ◽  
Tao Takagaki ◽  
Yu Sasano ◽  
...  

Abstract Despite systematic approaches to mapping networks of genetic interactions in Saccharomyces cerevisiae, exploration of genetic interactions on a genome-wide scale has been limited. The S. cerevisiae haploid genome has 110 regions that are longer than 10 kb but harbor only non-essential genes. Here, we attempted to delete these regions by PCR-mediated chromosomal deletion technology (PCD), which enables chromosomal segments to be deleted by a one-step transformation. Thirty-three of the 110 regions could be deleted, but the remaining 77 regions could not. To determine whether the 77 undeletable regions are essential, we successfully converted 67 of them to mini-chromosomes marked with URA3 using PCR-mediated chromosome splitting technology and conducted a mitotic loss assay of the mini-chromosomes. Fifty-six of the 67 regions were found to be essential for cell growth, and 49 of these carried co-lethal gene pair(s) that were not previously been detected by synthetic genetic array analysis. This result implies that regions harboring only non-essential genes contain unidentified synthetic lethal combinations at an unexpectedly high frequency, revealing a novel landscape of genetic interactions in the S. cerevisiae genome. Furthermore, this study indicates that segmental deletion might be exploited for not only revealing genome function but also breeding stress-tolerant strains.


Sign in / Sign up

Export Citation Format

Share Document